A SURVEY OF MATLAB EFFICIENCY IN DAMAGE DETECTION OF CONCRETE GRAVITY IN CONCRETE GRAVITY DAMS

Authors

DOI:

https://doi.org/10.31436/iiumej.v20i1.970

Keywords:

Concrete Gravity Dams, Frequency Analysis, Failure, Wavelet Analysis, SAP2000

Abstract

 Detection of damage in concrete gravity dams (CGDs) is one of the challenges that need to be overcome since dam failure may lead to irreversible consequences. This research aims to detect structural damage within CGDs by wavelet analysis. From a structural point of view, stiffness is an important factor in the dynamic behaviour of concrete gravity dam systems. Any sudden change in the stiffness leads to alteration in the dynamic response of the structures. The proposed analysis of such a condition will help to investigate the responses before and after the occurrence of any structural damage. The main contributions of this paper are to detect the existence of any damage in the dam structure and determine the damage location along the height of the dam. In order to achieve these purposes, three finite element models of the Pine Flat, Bluestone, and Folsom dams are chosen as case studies. These dams have been modelled for both intact and damaged states, and their geometrical, physical, and mechanical characteristics are defined by SAP2000 software. A series of modal analyses was performed to determine the frequencies and shapes of the structural motions. After reduction of the elasticity modulus by 20% and 50%, the Discrete Wavelet Transform (DWT) was applied to the difference between the intact and damaged observations. Then, the DWT outputs were analysed to get information about the existence of damage as well as its location in the dam structure. Overall, from the obtained results, the main finding of this study states that the location and severity of the structural damages have been efficiently detected according to the significant amplitude variations in DWT diagrams.

ABSTRAK: Pengesanan kerosakan pada empangan graviti konkrit (CGDs) adalah salah satu cabaran yang perlu diatasi disebabkan kegagalan empangan yang boleh membawa kepada akibat buruk. Kajian ini bertujuan bagi mengesan kerosakan struktur dalam CGDs menggunakan analisis wavelet. Dari sudut pandang struktur, struktur yang kukuh adalah faktor penting dalam sifat dinamik sistem empangan graviti konkrit. Sebarang perubahan secara tiba-tiba pada struktur bangunan membawa kepada perubahan tindak balas dinamik struktur. Analisis yang dicadangkan terhadap keadaan ini membantu dalam memberi tindak balas sebelum dan selepas jika berlaku sebarang kerosakan struktur. Sumbangan utama kajian ini adalah bagi mengesan jika terdapat sebarang kerosakan pada struktur dalam empangan dan menentukan lokasi kerosakan sepanjang ketinggian empangan. Bagi mencapai matlamat ini, tiga model unsur terhingga daripada empangan Pine Flat, Bluestone dan Folsom telah dipilih sebagai kes kajian. Kesemua empangan ini dimodelkan bagi kedua-dua keadaan iaitu ketika baik dan rosak. Ciri geometri, fizikal dan ciri-ciri mekanikal juga telah ditakrif menggunakan perisian SAP2000. Satu siri model analisis telah dijalankan bagi menentukan frekuensi dan bentuk gerakan struktur. Selepas pengurangan modulus keanjalan sebanyak 20% dan 50%, Transformasi Wavelet Diskret (DWT) telah digunakan bagi mengesan perbezaan antara keadaan baik dan rosak. Kemudian, hasil dari DWT ini dianalisis bagi mendapatkan maklumat mengenai kewujudan kerosakan pada empangan dan juga lokasi kerosakan dalam struktur empangan. Secara keseluruhan, hasil kajian berjaya menentukan lokasi dan tahap kerosakan struktur dengan cekap mengikut variasi amplitud ketara dalam rajah DWT.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Dhakal D, Neupane K, Thapa C, Ramanjaneyulu G. V. (2013) Different techniques of structural of health monitoring. International Journal of Civil Structural Environmental and Infrastructure Engineering, 3(2): 55-66.

Aldemir A, Binici B, Arici Y, Kurc O, Canbay E. (2015) Pseudo-dynamic testing of a concrete gravity dam. Earthquake Engineering Structural Dynamics, 44(11): 1747-1763. https://doi.org/10.1002/eqe.2553. DOI: https://doi.org/10.1002/eqe.2553

Alembagheri, M, Ghaemian M. (2013) Damage assessment of a concrete arch dam through nonlinear incremental dynamic analysis. Soil Dynamics and Earthquake Engineering, 44:127-137. http://dx.doi.org/10.1016/j.soildyn.2012.09.010. DOI: https://doi.org/10.1016/j.soildyn.2012.09.010

Raich AM, Liszkai TR. (2012) Multi-objective optimization of sensor and excitation layouts for frequency response function-based structural damage identification. Computer-Aided Civil and Infrastructure Engineering, 27(2): 95-117. https://doi.org/10.1111/j.1467-8667.2011.00726.x. DOI: https://doi.org/10.1111/j.1467-8667.2011.00726.x

Lian J, He L, Ma B, Li H, Peng W. (2013). Optimal sensor placement for large structures using the nearest neighbor index and a hybrid swarm intelligence algorithm. Smart Materials and Structures, 22(9): 82-92. https://doi.org/10.1088/0964-1726/22/9/095015. DOI: https://doi.org/10.1088/0964-1726/22/9/095015

Pirboudaghi S, Tarinejad R, Alami M. (2016). Damage detection based on system identification of concrete arch dam using XFEM based cohesive crack segments and wavelet transform. Modarres Mechanical Engineering Journal, 16(12): 373-383.

Lin C. (2016). Ambient modal identification using non-stationary. Archive of Applied Mechanics, 86(8):1449-1464.

Chiu JK, Cermak JE, Chou LS. (2007). Random decrement based method for modal parameter identification of a dynamic system using acceleration responses. Journal of Wind Engineering and Industrial Aerodynamics, 95(6): 389-410. https://doi.org/10.1016/j.jweia.2006.08.004. DOI: https://doi.org/10.1016/j.jweia.2006.08.004

Sun D, Ren Q. (2016). Seismic damage analysis of concrete gravity dam based on wavelet transform. Shock and Vibration, 9: 1-8. http://dx.doi.org/10.1155/2016/6841836. DOI: https://doi.org/10.1155/2016/6841836

Samii A, Lotfi V. (2007). Comparison of coupled and decoupled modal approaches in the seismic analysis of concrete gravity dams in the time domain. Finite Elements in Analysis and Design, 43:1003-1012. https://doi.org/10.1016/j.finel.2007.06.015. DOI: https://doi.org/10.1016/j.finel.2007.06.015

Calayir Y, Dumanoğlu AA, Bayraktar A. (2007). Earthquake analysis of gravity dam-reservoir systems using the Eulerian and Lagrangian approaches. Computers & Structures, 5(3): 877-890. https://doi.org/10.1016/0045-7949(95)00309-6. DOI: https://doi.org/10.1016/0045-7949(95)00309-6

SAP2000, C. S. I. (2015). Computer & Structures Inc. Linear and nonlinear static and dynamic analysis of three-dimensional structures. Berkeley (CA): Computer & Structures.

Pirboudaghi S, Tarinejad R, Alami M. (2018). Damage detection based on system identification of concrete dams using an extended finite element–wavelet transform coupled procedure. Journal of Vibration and Control, 24(18): 4226-4246. https://doi.org/10.1177/1077546317722428 DOI: https://doi.org/10.1177/1077546317722428

Kourehli SS. (2018). Structural damage identification based on expanded mode shapes using extreme learning machine. Sharif Journal of Civil Engineering, 33(2): 91-98.

Hariri-Ardebili MA, Saouma VE. (2016). Collapse fragility curves for concrete dams: a comprehensive study. Journal of Structural Engineering, 142(10): 374-399. doi: 10.1016/j.engstruct.2016.09.034. DOI: https://doi.org/10.1016/j.engstruct.2016.09.034

USACE. (1995) Gravity dam design. US Army Corps of Engineers, USA.

Ellingwood B, Tekie P. (2003). Fragility analysis of concrete gravity dams, USA.

Alembagheri M, Seyedkazemi M. (2014). Seismic performance sensitivity and uncertainty analysis of gravity dams. Earthquake Engineering Structural Dynamics, 44(1): 41-58. https://doi.org/10.1002/eqe.2457. DOI: https://doi.org/10.1002/eqe.2457

Yankey G, Deschamps R, McCray M, Bentler DJ. (2000). Parametric study and subsurface exploration plan for Bluestone Dam BT - sessions of geo-Denver 2000 - slope stability 2000, GSP 101, 289: 355–371. DOI: https://doi.org/10.1061/40512(289)26

Bayraktar A, Türker T, Akköse M, Ateş Ş. (2010). The effect of reservoir length on seismic performance of gravity dams to near- and far-fault ground motions. Natural Hazards, 52(2): 257-275.

Alembagheri M. (2016). Earthquake damage estimation of concrete arch dams using linear analysis and empirical failure criteria. Soil Dynamics and Earthquake Engineering, 90: 327-339.

Lotfollahi M, Shamsaei M, Hesari M. (2011) Using static wavelet transformation (SWT) in crack detection of arch concrete dams under frequency analysis. Omran Modares Journal, 3: 27-39.

Daubechies I. (1992). Ten lectures on Wavelets. CBMS-NSF Conference Series 61, Philadelphia, PA: SIAM. https://doi.org/10.1137/1.9781611970104. DOI: https://doi.org/10.1137/1.9781611970104

Mallat SG. (1999). A Wavelet Tour of Signal Processing, London: Academic Press. PMCid:PMC407895, 2nd Ed.

Downloads

Published

2019-06-01

How to Cite

Esmaielzadeh, S., Ahmadi, H., & Hosseini, S. A. (2019). A SURVEY OF MATLAB EFFICIENCY IN DAMAGE DETECTION OF CONCRETE GRAVITY IN CONCRETE GRAVITY DAMS. IIUM Engineering Journal, 20(1), 29–48. https://doi.org/10.31436/iiumej.v20i1.970

Issue

Section

Civil and Environmental Engineering