Adsorptive removal of Pb (II) using exfoliated graphite adsorbent:influence of experimental conditions and magnetic CoFe2O4 decoration

Authors

DOI:

https://doi.org/10.31436/iiumej.v20i1.965

Keywords:

Adsorption, heavy metal, exfoliated graphite, Pb(II) ions, wastewater treatment

Abstract

The worm-like exfoliated graphite (EG) based adsorbents prepared from low-cost natural graphite flakes via facile synthesis processes have been found to be efficient adsorbents when it comes to removing Pb (II) from aqueous solution. EG was fabricated by chemical intercalation and microwave assisted exfoliation. Furthermore, the magnetic exfoliated graphite (MEG) was developed by incorporating CoFe2O4 particles into the EG layers using the citric acid based sol-gel technique. Adsorption behaviour of Pb (II) on the as-prepared adsorbents was investigated by taking several experimental conditions into consideration such as contact time, initial concentration, adsorbent dosage, and pH value. The results with initial neutral pH indicated that the adsorption isotherms for Pb (II) on the EG and MEG were well consistent with the Langmuir isotherm model revealing the maximum adsorption capacity of 106 mg/g and 68 mg/g for EG and MEG, respectively. The adsorption kinetics of Pb (II) was found to adhere to the pseudo-second-order kinetic model. The chemical interaction between ? electrons on graphite sheets and Pb (II) ions was suggested to play an essential role in the adsorption mechanism. The introduction of magnetic CoFe2O4 to the EG was found to induce the shift of optimal pH value to a more basic condition. The characterization of the adsorbents was performed using relevant analysis techniques such as Scanning electron microscope (SEM), X–ray powder diffraction (XRD), vibrating-sample magnetometer (VSM), and Fourier-transform infrared (FTIR). The results of this work suggest a high possibility for application of the as-prepared modified graphite to remove hazardous substances in practical wastewater treatment systems.

ABSTRAK:  Penyerap Pengelupas Grafit (EG) yang berupa seperti cacing dihasilkan dari grafit semulajadi yang murah melalui proses sintesis serpihan, ia juga merupakan penyerap yang bagus dalam mengasingkan Pb (II) daripada larutan akues. EG direka dengan tindak balas interkalasi kimia dan pengelupasan melalui gelombang mikro. Tambahan, pengelupas grafit magnet (MEG) telah dihasilkan dengan memasukkan zarah CoFe2O4 ke dalam lapisan EG menggunakan teknik sol-gel yang berasaskan asid sitrik. Tindak balas penyerapan Pb (II) pada penyerap yang disiapkan ini, dikaji dengan mengambil kira beberapa keadaan eksperimen seperti waktu disentuh, konsentrasi awal, dos penyerap dan nilai pH.  Hasil keputusan pH neutral awal menunjukkan bahawa isoterm penyerapan bagi Pb (II) pada EG dan MEG adalah konsisten dengan model isoterm Langmuir. Ini menunjukkan kapasiti penyerapan maksimum 106 mg/g dan 68 mg/g bagi EG dan MEG, masing-masing. Penyerapan kinetik Pb (II) didapati mematuhi model kinetik pesudo-order-kedua. Interaksi kimia antara elektron ? pada helaian grafit dan ion Pb (II) memainkan peranan penting dalam mekanisme penyerapan. Pengenalan magnet CoFe2O4 kepada EG didapati telah mengubah nilai pH optimum kepada keadaan asal. Pengelasan penyerapan dilakukan menggunakan teknik analisis yang relevan seperti Mikroskop Elektron Pengimbasan (SEM), Difraksi Serbuk sinar-X (XRD), Magnetometer Sampel-Getaran (VSM) dan Inframerah Perubahan-Fourier (FTIR). Hasil kerja ini mencadangkan kemungkinan besar bagi penggunaan grafit ubah suai yang disediakan bagi membuang bahan berbahaya dalam sistem rawatan air sisa praktikal.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Thi Thuong Nguyen, NTT Hi-Technology Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam

Picture1.jpg

References

Flora G, Gupta D, Tiwari A. (2012). Toxicity of lead: A review with recent updates. Interdisciplinary Toxicology, 5:47-58.

Deng X, Lu L, Li H, Luo F. (2010). The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method. Journal of hazardous materials, 183:923-930.

Huang ZH, Zheng X, Lv W, Wang M, Yang QH, Kang F. (2011). Adsorption of lead(II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir : the ACS journal of surfaces and colloids, 27:7558-7562.

Gollavelli G, Chang C-C, Ling Y-C. (2013). Facile Synthesis of Smart Magnetic Graphene for Safe Drinking Water: Heavy Metal Removal and Disinfection Control. ACS Sustainable Chemistry & Engineering, 1:462-472.

Zhang W, Shi X, Zhang Y, Gu W, Li B, Xian Y. (2013). Synthesis of water-soluble magnetic graphene nanocomposites for recyclable removal of heavy metal ions. Journal of Materials Chemistry A, 1:1745-1753.

Santhosh C, Kollu P, Felix S, Velmurugan V, Jeong SK, Grace AN. (2015). CoFe2O4 and NiFe2O4@graphene adsorbents for heavy metal ions - kinetic and thermodynamic analysis. RSC Advances, 5:28965-28972.

Pourbeyram S. (2016). Effective Removal of Heavy Metals from Aqueous Solutions by Graphene Oxide–Zirconium Phosphate (GO–Zr-P) Nanocomposite. Industrial & Engineering Chemistry Research, 55:5608-5617.

Kim J, Kim H, Kim B, Jeon K-J, Yoon S-H. (2014). Expanding characteristics of graphite in microwaveassisted exfoliation. Scientific Cooperations International Workshops on Engineering Branches, 273-277.

Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS. (2010). Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon, 48:2118-2122.

Sykam N, Kar KK. (2014). Rapid synthesis of exfoliated graphite by microwave irradiation and oil sorption studies. Materials Letters, 117:150-152.

Toyoda M, Inagaki M. (2000). Heavy oil sorption using exfoliated graphite New application of exfoliated graphite to protect heavy oil pollution. Carbon, 38:199-210.

Inagaki M, Toyoda M, Iwashita N, Nishi Y and Konno H. (2001). Exfoliated Graphite for Spilled Heavy Oil Recovery. Carbon Science, 2:1-8.

Tryba B, Morawski AW, Kaleńczuk RJ, Inagaki M. (2003). Exfoliated Graphite as a New Sorbent for Removal of Engine Oils from Wastewater. Spill Science & Technology Bulletin 8:569-571.

Zheng Y-P, Wang H-N, Kang F-Y, Wang L-N, Inagaki M. (2004). Sorption capacity of exfoliated graphite for oils-sorption in and among worm-like particles. Carbon, 42:2603-2607.

Tryba B, Przepiórski J, Morawski AW. (2003). Influence of chemically prepared H2SO4-graphite intercalation compound (GIC) precursor on parameters of exfoliated graphite (EG) for oil sorption from water. Carbon, 41:2013-2016.

Chung DDL. (2016). A review of exfoliated graphite. Journal of Materials Science 51:554-568.

Cai M, Thorpe D, Adamson DH, Schniepp HC. (2012). Methods of graphite exfoliation. Journal of Materials Chemistry, 22:24992-25002, DOI: https://doi.org/10.1039/c2jm34517j

Ding X, Wang R, Zhang X, Zhang Y, Deng S, Shen F, Zhang X, Xiao H, Wang L. (2014). A new magnetic expanded graphite for removal of oil leakage. Marine pollution bulletin, 81:1885-1890.

Wang G, Sun Q, Zhang Y, Fan J, Ma L. (2010). Sorption and regeneration of magnetic exfoliated graphite as a new sorbent for oil pollution. Desalination, 263:183-188.

Lutfullin MA, Shornikova ON, Vasiliev AV, Pokholok KV, Osadchaya VA, Saidaminov MI, Sorokina NE, Avdeev VV. (2014). Petroleum products and water sorption by expanded graphite enhanced with magnetic iron phases. Carbon, 66:417-425.

Jin C, Dong JH, Li DX, Zhu MC, Zhang YC. 2011. Characterization and Application of Expanded Graphite Coated by Fe3O4 Nanoparticles. Advanced Materials Research, 356-360:554-557. DOI: https://doi.org/10.4028/www.scientific.net/AMR.356-360.554

Mallampati R, Xuanjun L, Adin A, Valiyaveettil S. (2015). Fruit Peels as Efficient Renewable Adsorbents for Removal of Dissolved Heavy Metals and Dyes from Water. ACS Sustainable Chemistry & Engineering, 3:1117-1124.

Huang Y, Li S, Chen J, Zhang X, Chen Y. (2014). Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H3PO4 activation: Adsorption capacity, kinetic and isotherm studies. Applied Surface Science, 293:160-168.

Raad MT, Behnejad H, Jamal ME. (2016). Equilibrium and kinetic studies for the adsorption of benzene and toluene by graphene nanosheets: a comparison with carbon nanotubes. Surface and Interface Analysis, 48:117-125.

Yusuf M, Elfghi FM, Zaidi SA, Abdullah EC, Khan MA. (2015). Applications of graphene and its derivatives as an adsorbent for heavy metal and dye removal: a systematic and comprehensive overview. RSC Advances, 5:50392-50420.

Yang X, Cui X. (2013). Adsorption characteristics of Pb (II) on alkali treated tea residue. Water Resources and Industry, 3:1-10.

Pandey R, Ansari NG, Prasad RL, Murthy RC. (2014). Pb(II) Removal from Aqueous Solution by Cucumissativus (Cucumber) Peel: Kinetic, Equilibrium & Thermodynamic Study. American Journal of Environmental Protection, 2:51-58.

Fan M, Li T, Hu J, Cao R, Wu Q, Wei X, Li L, Shi X, Ruan W. (2016). Synthesis and Characterization of Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron (nZVI/rGO) Composites Used for Pb(II) Removal. Materials, 9:687-708.

Gandha K, Elkins K, Poudyal N, Ping Liu J. (2015) Synthesis and characterization of CoFe2O4 nanoparticles with high coercivity. Journal of Applied Physics, 117:1-4. DOI: https://doi.org/10.1063/1.4916544

Shi M, Zuo R, Xu Y, Jiang Y, Yu G, Su H, Zhong J. (2012). Preparation and characterization of CoFe2O4 powders and films via the sol–gel method. Journal of Alloys and Compounds, 512:1665-1670.

Zhou C, Zhu H, Wang Q, Wang J, Cheng J, Guo Y, Zhou X, Bai R. (2017). Adsorption of mercury(II) with an Fe3O4 magnetic polypyrrole–graphene oxide nanocomposite. RSC Advances, 7:18466-18479.

Downloads

Published

2019-06-01

How to Cite

Nguyen, T. T., Nguyen, T. N. T., Bach, L. G., Nguyen, D. T., & Bui, T. P. Q. (2019). Adsorptive removal of Pb (II) using exfoliated graphite adsorbent:influence of experimental conditions and magnetic CoFe2O4 decoration. IIUM Engineering Journal, 20(1), 202–215. https://doi.org/10.31436/iiumej.v20i1.965

Issue

Section

Materials and Manufacturing Engineering