NUMERICAL STUDY OF THERMAL CHARACTERISTICS OF FUEL OIL-ALUMINA AND WATER-ALUMINA NANOFLUIDS FLOW IN A CHANNEL IN THE LAMINAR FLOW
DOI:
https://doi.org/10.31436/iiumej.v19i1.857Abstract
The present study investigated the thermal effects of the use of nanoparticles in the fuel-oil and water-based fluids, as well as the numerical simulation of laminar flow of fuel-oil-alumina and the water-alumina nanofluids in a channel. A second order discretization method was used for solving equations and a SIMPLE algorithm was applied for pressure-velocity coupling using Fluent. Effect of nanoparticle volume fraction and particles size in different Reynolds numbers (900≤Re≤2100) on the convective heat transfer coefficient was studied. The simulation was conducted for three different volume fractions and particle sizes in the laminar flow under constant heat flux. The results showed that adding nanoparticles to the base fluid caused an increase in the thermal conductivity ratio of the fluid, which was observed to a greater degree in the fuel oil-alumina nanofluid than in the water-alumina nanofluid. The increase in nanoparticle volume fraction caused an increase in the convective heat transfer coefficient and the Nusselt number of the nanofluids. The significant point of this study was that in the same volume fraction, the effect of adding alumina nanoparticles to the fuel-oil-based fluid had more effect than adding these particles to water-based fluid, while the effect of increasing the Reynolds number in the water-alumina nanofluid on convective heat transfer coefficient was greater than the fuel-oil-alumina. Also, in the same Reynolds number and volume fraction with increasing size of nanoparticles, the value of the convective heat transfer coefficient was decreased. The results of this study can be used in refineries and petrochemical industries where the fuel-oil fluid flows in the channels.
ABSTRAK: Kajian ini adalah bagi mengkaji kesan haba terhadap penggunaan bahan bakar-minyak dan cecair asas-air dalam nanopartikel, juga menjalankan simulasi pengiraan aliran laminar bahan bakar-minyak-alumina dan cecair-nano air-alumina dalam saluran. Kaedah berasingan kelas kedua telah digunakan bagi menyelesaikan persamaan dan algoritma SIMPLE telah diaplikasikan dalam gandingan kelajuan-tekanan menggunakan Fluent. Kesan jumlah pecahan nanopartikel dan pelbagai bilangan saiz zarah dalam bilangan Reynolds (900≤Re≤2100) pada pekali pemindahan haba perolakan telah dikaji. Simulasi telah dijalankan pada tiga pecahan isipadu berlainan dan pada zarah dalam aliran laminar dengan fluks haba tetap. Hasil kajian menunjukkan bahawa dengan penambahan nanopartikel dalam cecair-asas menyebabkan peningkatan nisbah daya pengaliran haba cecair pada cecair-nano bahan bakar-minyak-alumina melebihi daripada cecair-nano air-alumina. Penambahan pada pecahan isipadu nanopartikel ini menyebabkan peningkatan pada nilai pekali pemindahan haba perolakan dan bilangan Nusselt dalam cecair-nano. Perkara penting dalam kajian ini adalah pada pecahan isipadu sama, kesan penambahan nanopartikel alumina kepada cecair berasaskan minyak mempunyai kesan yang lebih besar daripada penambahan zarah-zarah ini kepada cecair berasaskan air. Pada masa sama, kesan peningkatan bilangan Reynolds dalam cecair-nano air-alumina pada pekali pemindahan haba perolakan lebih besar daripada kesan peningkatan bahan bakar-minyak-alumina. Selain itu, pada bilangan Reynolds yang sama dan dengan peningkatan saiz nanopartikel pecahan isipadu, nilai pekali pemindahan haba perolakan turut menurun. Hasil kajian ini boleh digunakan dalam industri penapisan dan petrokimia di mana bahan bakar cecair minyak mengalir dalam saluran.
Downloads
Metrics
References
[2] Maı̈ga SB, Nguyen CT, Galanis N, Roy G. (2004) Heat transfer behaviors of nanofluids in a uniformly heated tube. Superlattices and Microstructures, 35(3):543-557.
[3] Prasher R, Song D, Wang J, Phelan P. (2006) Measurements of nanofluid viscosity and its implications for thermal applications. Applied Physics Letters, 89(13):133-140.
[4] Bianco V, Manca O, Nardini S. (2011) Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube. International Journal of Thermal Sciences, 50(3):341-349.
[5] Bianco V, Manca O, Nardini S. (2010) Numerical simulation of water/Al2O3 nanofluid turbulent convection. Advances in Mechanical Engineering, Article ID976254:1-10.
[6] Bianco V, Nardini S, Manca O. (2011) Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square section tubes. Nanoscale research letters, 6(1):252-259.
[7] Corcione M, Cianfrini M, Quintino A. (2012) Heat transfer of nanofluids in turbulent pipe flow. International Journal of Thermal Sciences, 56(3):58-69.
[8] Rahimi-Esbo M, Ranjbar A. A, Ramiar A, Rahgoshay M, Arya A. (2012) Numerical study of the turbulent forced convection jet flow of nanofluid in a converging duct. Numerical Heat Transfer, Part A: Applications, 62(1):60-79.
[9] Ghaffari O, Behzadmehr A, Ajam H. (2010) Turbulent mixed convection of a nanofluid in a horizontal curved tube using a two-phase approach. International Communications in Heat and Mass Transfer, 37(10):1551-1558.
[10] Massoudi M, Phuoc T X. (2012) Remarks on constitutive modeling of nanofluids. Advances in Mechanical Engineering, 4(1):90-105.
[11] Yimin X, Li Q. (2000) Heat transfer enhancement of nanofluids. International Journal of heat and fluid flow, 21(1):58-64.
[12] Yimin X, Roetzel W. (2000) Conceptions for heat transfer correlation of nanofluids. International Journal of heat and Mass transfer, 43(19):3701-3707.
[13] Keblinski P, Phillpot SR, Choi SU, Eastman JA. (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International journal of heat and mass transfer, 45(4):855-863.
[14] Wang X, Xu X, Choi SU. (1999) Thermal conductivity of nanoparticle-fluid mixture, Journal of Thermophysics and Heat Transfer, 13(2):474-480.
[15] Pak BC, Cho YI. (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal, 11(2):151-170.
[16] Li Q, Xuan Y. (2002) Convective heat transfer and flow characteristics of Cu-water nanofluid. Science in China Series E: Technological Sciences, 45(4):408-416.
[17] Li Q, Xuan Y, and Wang J. (2003) Investigation on convective heat transfer and flow features of nanofluids. Journal of Heat transfer, 125(2):151-155.
[18] Sankar N, Mathew N, Sobhan C B. (2008) Molecular dynamics modeling of thermal conductivity enhancement in metal nanoparticle suspensions. International Communications in Heat and Mass Transfer, 35(7):867-872.
[19] Hao ZN, Zhao R, Wang LR. (2005) Analyses of Physical Mechanism and Numerical Simulation for micro-convection Enhancement in the Solid-Liquid Two Phase Flow, Journal of Engineering Thermophysics, 26(1):656-658.
[20] Khaled A, Vafai K. (2005) Heat transfer enhancement through control of thermal dispersion effects. International Journal of Heat and Mass Transfer, 48(11):2172-2185.
[21] Dongsheng W, Ding Y. (2004) Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International journal of heat and mass transfer, 47(24):5181-5188.
[22] Maïga EB, Sidi, Nguyen CT, Galanis N, Roy G, Maré T, Coqueux M. (2006) Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension. International Journal of Numerical Methods for Heat & Fluid Flow, 16(3):275-292.
[23] Rostamani M, Hosseinizadeh SF, Gorji M, Khodadadi JM. (2010) Numerical study of turbulent forced convection flow of nanofluids in a long horizontal duct considering variable properties. International Communications in Heat and Mass Transfer, 37(10):1426-1431.
[24] Mokhtari R, Talebi F, Rafee R, Shariat M. (2015) Numerical Study of Pressure Drop and Thermal Characteristics of Al2O3–Water Nanofluid Flow in Horizontal Annuli. Heat Transfer Engineering 36(2):166-177.
[25] Celik H, Mobedi M, Manca O, Buonomo B. (2018) Enhancement of Heat Transfer in Partially Heated Vertical Channel Under Mixed Convection by Using Al2O3 Nanoparticles. Heat Transfer Engineering, 39(3): 229-240.
[26] Battez A, Hernández R, González JL, Fernández D, Machado A, Chou R, Riba J. (2008) CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear, 265(3):422-428.
[27] Wu YY, Tsui WC, Liu TC. (2007) Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear, 262(7):819-825.
[28] Saeedinia M, Akhavan-Behabadi MA, Razi P. (2012) Thermal and rheological characteristics of CuO–Base oil nanofluid flow inside a circular tube. International Communications in Heat and Mass Transfer, 39(1):152-159.
[29] Anoop KB, Sundararajan T, Das S K. (2009) Effect of particle size on the convective heat transfer in nanofluid in the developing region. International journal of heat and mass transfer, 52(9):2189-2195.
[30] Moraveji M, Darabi M, Haddad MH, Davarnejad R. (2011) Modeling of convective heat transfer of a nanofluid in the developing region of tube flow with computational fluid dynamics. International communications in heat and mass transfer, 38(9):1291-1295.
[31] Pak BC, Cho YI. (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal, 11(2):151-170.
[32] Brinkman HC. (1952) The viscosity of concentrated suspensions and solutions. The Journal of Chemical Physics, 20(4):571-571.
[33] Patel HE, Sundararajan T, Pradeep T, Dasgupta T, Dasgupta N, Das SK. (2005) A micro-convection model for thermal conductivity of nanofluids. Pramana, 65(5):863-869.
[34] Santra AK, Sen S, Chakraborty N. (2009) Study of heat transfer due to laminar flow of copper-water nanofluid through two isothermally heated parallel plates. International Journal of Thermal Sciences 48(2):391-400.
[35] Saeedinia M, Akhavan-Behabadi M A, and Razi P. (2012) Thermal and rheological characteristics of CuO–Base oil nanofluid flow inside a circular tube. International Communications in Heat and Mass Transfer, 39(1):152-159.
[36] Murshed SMS , Leong KC, Yang C. (2008) Investigations of thermal conductivity and viscosity of nanofluids. International Journal of Thermal Sciences, 47(5):560-568.
[37] Li S, Eastman JA. (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121(2):280-289.
[38] Eastman JA, Choi SUS, Li Sh, Yu W, Thompson LJ. (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied physics letters, 78(6):718-720.
[39] Li Q, Xuan Y, Wang J. (2003) Investigation on convective heat transfer and flow features of nanofluids. Journal of Heat transfer, 125(2):151-155.
[40] Jung JY, Oh HS, Kwak HY. (2009) Forced convective heat transfer of nanofluids in microchannels. International Journal of Heat and Mass Transfer, 52(1):466-472.