• Mehdi Zekriyapanah Gashti




Exponential growth of medical data and recorded resources from patients with different diseases can be exploited to establish an optimal association between disease symptoms and diagnosis. The main issue in diagnosis is the variability of the features that can be attributed for particular diseases, since some of these features are not essential for the diagnosis and may even lead to a delay in diagnosis. For instance, diabetes, hepatitis, breast cancer, and heart disease, that express multitudes of clinical manifestations as symptoms, are among the diseases with higher morbidity rate. Timely diagnosis of such diseases can play a critical role in decreasing their effect on patients’ quality of life and on the costs of their treatment. Thanks to the large data set available, computer aided diagnosis can be an advanced option for early diagnosis of the diseases. In this paper, using a Flower Pollination Algorithm (FPA) and K-Nearest Neighbor (KNN), a new method is suggested for diagnosis. The modified model can diagnose diseases more accurately by reducing the number of features. The main purpose of the modified model is that the Feature Selection (FS) should be done by FPA and data classification should be performed using KNN. The results showed higher efficiency of the modified model on diagnosis of diabetes, hepatitis, breast cancer, and heart diseases compared to the KNN models.

ABSTRAK: Pertumbuhan eksponen dalam data perubatan dan sumber direkodkan daripada pesakit dengan penyakit berbeza boleh disalah guna bagi membentuk kebersamaan optimum antara simptom penyakit dan mengenal pasti gejala penyakit (diagnosis). Isu utama dalam diagnosis adalah kepelbagaian ciri yang dimiliki pada penyakit tertentu, sementara ciri-ciri ini tidak penting untuk didiagnosis dan boleh mengarah kepada penangguhan dalam diagnosis. Sebagai contoh, penyakit kencing manis, radang hati, barah payudara dan penyakit jantung, menunjukkan banyak klinikal simptom jelas dan merupakan penyakit tertinggi berlaku dalam masyarakat. Diagnosis tepat pada penyakit tersebut boleh memainkan peranan penting dalam mengurangkan kesan kualiti  hidup dan kos rawatan pesakit. Terima kasih kepada set data yang banyak, diagnosis dengan bantuan komputer boleh menjadi pilihan maju menuju ke arah diagnosis awal kepada penyakit. Kertas ini menggunakan Algoritma Flower Pollination (FPA) dan K-Nearest Neighbor (KNN), iaitu kaedah baru dicadangkan bagi diagnosis. Model yang diubah suai boleh mendiagnosis penyakit lebih tepat dengan mengurangkan bilangan ciri-ciri. Tujuan utama model yang diubah suai ini adalah bagi Pemilihan Ciri (FS) perlu dilakukan menggunakan FPA and pengkhususan data perlu dijalankan menggunakan KNN. Keputusan menunjukkan model yang diubah suai lebih cekap dalam mendiagnosis penyakit kencing manis, radang hati, barah payudara dan penyakit jantung berbanding model KNN.


Download data is not yet available.


Metrics Loading ...


[1] Begum S, Ahmed MU, Funk P, Xiong N, Folke M. (2011) Case-Based Reasoning Systems in the Health Sciences: A Survey of Recent Trends and Developments. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 41(4):421-434.
[2] Srikanth P, Deverapalli D. (2016) A Critical Study of Classification Algorithms Using Diabetes Diagnosis. in 2016 IEEE 6th International Conference on Advanced Computing (IACC).
[3] Neshat M, Sargolzaei M, Nadjaran Toosi A, Masoumi A. (2012) Hepatitis Disease Diagnosis Using Hybrid Case Based Reasoning and Particle Swarm Optimization. ISRN Artificial Intelligence. 2012:6.
[4] Bhatia S, Prakash P, Pillai GN. (2009) Svm Based Decision Support System for Heart Disease Classification with Integer-coded Genetic Algorithm to Select Critical Features.
[5] Arya C, Tiwari R. (2016) Expert system for breast cancer diagnosis: A survey. in 2016 International Conference on Computer Communication and Informatics (ICCCI).
[6] Bazazeh D, Shubair R. (2016) Comparative study of machine learning algorithms for breast cancer detection and diagnosis. in 2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA).
[7] Yang X-S. (2012) Flower Pollination Algorithm for Global Optimization. in Unconventional Computation and Natural Computation. Berlin, Heidelberg: Springer Berlin Heidelberg.
[8] Martin B. (1995) Instance-based learning: nearest neighbour with generalisation, in Computer Science Working Papers. University of Waikato, Department of Computer Science.
[9] Duda RO HP, Stork DG. (2007) Pattern Classification. vol. 24. John Wiley & Sons.
[10] Temurtas H, Yumusak N, Temurtas F. (2009) A comparative study on diabetes disease diagnosis using neural networks. Expert Systems with Applications, 36(4):8610-8615.
[11] Ganji MF, Abadeh MS. (2011) A fuzzy classification system based on Ant Colony Optimization for diabetes disease diagnosis. Expert Systems with Applications, 38(12):14650-14659.
[12] El-Sappagh S, Elmogy M, Riad AM. (2015) A fuzzy-ontology-oriented case-based reasoning framework for semantic diabetes diagnosis. Artificial Intelligence in Medicine, 65(3):179-208.
[13] Dogantekin E, Dogantekin A, Avci D, Avci L. (2010) An intelligent diagnosis system for diabetes on Linear Discriminant Analysis and Adaptive Network Based Fuzzy Inference System: LDA-ANFIS. Digital Signal Processing, 20(4):1248-1255.
[14] Santhanam T, Padmavathi MS. (2015) Application of K-Means and Genetic Algorithms for Dimension Reduction by Integrating SVM for Diabetes Diagnosis. Procedia Computer Science, 47:76-83.
[15] Beloufa F, Chikh MA. (2013) Design of fuzzy classifier for diabetes disease using Modified Artificial Bee Colony algorithm. Computer Methods and Programs in Biomedicine, 112(1):92-103.
[16] Hayashi Y, Yukita S. (2016) Rule extraction using Recursive-Rule extraction algorithm with J48graft combined with sampling selection techniques for the diagnosis of type 2 diabetes mellitus in the Pima Indian dataset. Informatics in Medicine Unlocked, 2:92-104.
[17] Gashti MZ. (2017) A novel hybrid support vector machine with decision tree for data classification. International Journal of Advanced and Applied Sciences, 4(9):138-143.
[18] Elaboudi N, Benhlima L. (2016) A New Approach Based on PCA and CE-SVM for Hepatitis Diagnosis. in Proceedings of the Mediterranean Conference on Information & Communication Technologies 2015. Cham: Springer International Publishing.
[19] Bascil MS, Temurtas F. (2011) A study on hepatitis disease diagnosis using multilayer neural network with levenberg marquardt training algorithm. J Med Syst, 35(3):433-436.
[20] Mitra M, Samanta RK. (2015) Hepatitis Disease Diagnosis Using Multiple Imputation and Neural Network with Rough Set Feature Reduction. in Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014. Cham: Springer International Publishing.
[21] Onan A. (2015) A fuzzy-rough nearest neighbor classifier combined with consistency-based subset evaluation and instance selection for automated diagnosis of breast cancer. Expert Systems with Applications, 42(20):6844-6852.
[22] Bhardwaj A, Tiwari A. (2015) Breast cancer diagnosis using Genetically Optimized Neural Network model. Expert Systems with Applications, 42(10):4611-4620.
[23] Sun W, Tseng TB, Zhang J, and Qian W. (2017) Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data. Comput Med Imaging Graph, 57:4-9.
[24] Asri H, Mousannif H, Moatassime HA, Noel T. (2016) Using Machine Learning Algorithms for Breast Cancer Risk Prediction and Diagnosis. Procedia Computer Science, 83:1064-1069.
[25] Ephzibah EP, Sundarapandian V. (2012) A Fuzzy Rule Based Expert System for Effective Heart Disease Diagnosis. in Advances in Computer Science and Information Technology. Computer Science and Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg.
[26] Ghumbre SU, Ghatol AA. (2012) Heart Disease Diagnosis Using Machine Learning Algorithm. in Proceedings of the International Conference on Information Systems Design and Intelligent Applications 2012 (INDIA 2012) held in Visakhapatnam, India, January 2012. Berlin, Heidelberg: Springer Berlin Heidelberg.
[27] Lahsasna A, Ainon RN, Zainuddin R, Bulgiba AM. (2012) A Transparent Fuzzy Rule-Based Clinical Decision Support System for Heart Disease Diagnosis. in Knowledge Technology. Berlin, Heidelberg: Springer Berlin Heidelberg.
[28] Pima Indians Diabetes Dataset.[https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes]
[29] Hepatitis Dataset.[https://archive.ics.uci.edu/ml/datasets/Hepatitis]
[30] Breast Cancer Dataset.[http://www.sgi.com/tech/mlc/db/breast-cancer.all ]
[31] Heart Diseases Dataset.[http://www.sgi.com/tech/mlc/db/heart.data]
[32] Farjamnia G, Gashti MZ, Barangi H, and Gasimov YS. (2017) The Study of Support Vector Machine to Classify the Medical Data. IJCSNS International Journal of Computer Science and Network Security, 17(12):145-150.
[33] Ryszard SM, Ivan B, Avan B. (1998) Machine Learning and Data Mining; Methods and Applications. John Wiley \& Sons, Inc. 456.




How to Cite

Zekriyapanah Gashti, M. (2018). A MODIFIED MODEL BASED ON FLOWER POLLINATION ALGORITHM AND K-NEAREST NEIGHBOR FOR DIAGNOSING DISEASES. IIUM Engineering Journal, 19(1), 144–157. https://doi.org/10.31436/iiumej.v19i1.854



Electrical, Computer and Communications Engineering