A DISTRIBUTED ENERGY EFFICIENT CLUSTERING ALGORITHM FOR DATA AGGREGATION IN WIRELESS SENSOR NETWORKS

  • Seyed Mohammad Bagher Musavi Shirazi
  • maryam sabet
  • Mohammad Reza Pajoohan

Abstract

Wireless sensor networks (WSNs) are a new generation of networks typically consisting of a large number of inexpensive nodes with wireless communications. The main purpose of these networks is to collect information from the environment for further processing. Nodes in the network have been equipped with limited battery lifetime, so energy saving is one of the major issues in WSNs. If we balance the load among cluster heads and prevent having an extra load on just a few nodes in the network, we can reach longer network lifetime. One solution to control energy consumption and balance the load among nodes is to use clustering techniques. In this paper, we propose a new distributed energy-efficient clustering algorithm for data aggregation in wireless sensor networks, called Distributed Clustering for Data Aggregation (DCDA). In our new approach, an optimal transmission tree is constructed among sensor nodes with a new greedy method. Base station (BS) is the root, cluster heads (CHs) and relay nodes are intermediate nodes, and other nodes (cluster member nodes) are the leaves of this transmission tree. DCDA balances load among CHs in intra-cluster and inter-cluster data communications using different cluster sizes. For efficient inter-cluster communications, some relay nodes will transfer data between CHs. Energy consumption, distance to the base station, and cluster heads’ centric metric are three main adjustment parameters for the cluster heads election. Simulation results show that the proposed protocol leads to the reduction of individual sensor nodes’ energy consumption and prolongs network lifetime, in comparison with other known methods.

ABSTRAK: Rangkaian sensor wayarles (WSN) adalah rangkaian generasi baru yang terdiri daripada nod-nod murah komunikasi wayarles. Tujuan rangkaian-rangkaian ini adalah bagi mengumpul maklumat sekeliling untuk proses seterusnya. Nod dalam rangkaian ini dilengkapi bateri kurang jangka hayat, jadi simpanan tenaga adalah satu isu besar dalam WSN. Jika beban diimbang antara induk kelompok dan lebihan beban dihalang pada setiap rangkaian iaitu hanya sebilangan kecil nod pada tiap-tiap kelompok,  jangka hayat dapat dipanjangkan pada sesebuah rangkaian. Satu penyelesaian adalah dengan mengawal penggunaan tenaga dan mengimbangi beban antara nod menggunakan teknik berkelompok. Kajian ini mencadangkan kaedah baru pembahagian tenaga berkesan secara algoritma berkelompok bagi pembahagian data dalam WSN, dikenali sebagai Pembahagian Kelompok Kumpulan Data (DCDA). Melalui pendekatan baru ini, pokok transmisi optimum dibina antara nod sensor melalui kaedah baru. Stesen utama (BS) ialah akar, induk kelompok-kelompok (CHs) dan nod penyiar ialah nod perantara, dan nod-nod lain (nod-nod ahli kelompok) ialah daun bagi pokok trasmisi. DCDA mengimbangi beban CHs antara-kelompok dan dalam-kelompok komunikasi data daripada kelompok berbeza saiz. Bagi komunikasi berkesan dalam-kelompok, sebahagian nod penyampai akan memindahkan data antara CHs. Penggunaan tenaga, jarak ke stesen utama dan induk kelompok metrik sentrik adalah tiga parameter pelaras bagi pemilihan induk kelompok. Keputusan simulasi protokol yang dicadang menunjukkan pengurangan penggunaan tenaga pada nod-nod sensor individu dan memanjangkan jangka hayat rangkaian, berbanding kaedah-kaedah lain yang diketahui.

Downloads

Download data is not yet available.

References

[1] Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E. (2002) Wireless sensor networks: a survey. Computer networks, 38:393-422.
[2] Anastasi G, Conti M, Di Francesco M, Passarella A. (2009) Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7:537-568.
[3] Yick J, Mukherjee B, Ghosal D. (2008) Wireless sensor network survey. Computer networks, 52:2292-2330.
[4] Aziz AA, Sekercioglu Y. A, Fitzpatrick P, Ivanovich M. (2013) A survey on distributed topology control techniques for extending the lifetime of battery powered wireless sensor networks. IEEE Communications Surveys & Tutorials, 15:121-144.
[5] Zhou W. (2011) Energy efficient clustering algorithm based on neighbors for wireless sensor networks. Journal of Shanghai University (English Edition), 15:150-153.
[6] Liu Y, Xiong N, Zhao Y, Vasilakos A. V, Gao J, Jia Y. (2010) Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET communications, 4:810-816.
[7] Heinzelman W. R, Chandrakasan A, Balakrishnan H, (2000) Energy-efficient communication protocol for wireless microsensor networks. Proceedings of the 33rd Annual Hawaii International Conference on System Sciences.
[8] Younis O, Fahmy S. (2004) HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3:366-379.
[9] Yu J, Qi Y, Wang G, Gu X. (2012) A cluster-based routing protocol for wireless sensor networks with nonuniform node distribution. AEU-International Journal of Electronics and Communications, 66:54-61.
[10] Albath J, Thakur M, Madria S. (2013) Energy constraint clustering algorithms for wireless sensor networks. Ad Hoc Networks, 11:2512-2525.
[11] Gu X, Yu J, Yu D, Wang G, Lv Y. (2014) ECDC: An energy and coverage-aware distributed clustering protocol for wireless sensor networks. Computers & Electrical Engineering, 40:384-398.
[12] Sha C, Wang R, Huang H, Sun L. (2010) Energy efficient clustering algorithm for data aggregation in wireless sensor networks. The Journal of China Universities of Posts and Telecommunications, 17:104-122.
[13] Upadhyayula S, Gupta S. K. (2007) Spanning tree based algorithms for low latency and energy efficient data aggregation enhanced convergecast (dac) in wireless sensor networks. Ad Hoc Networks, 5:626-648.
[14] Monaco U, Cuomo F, Melodia T, Ricciato F, Borghini M. (2006) Understanding optimal data gathering in the energy and latency domains of a wireless sensor network. Computer Networks, 50:3564-3584.
[15] Dimokas N, Katsaros D, Manolopoulos Y. (2010) Energy-efficient distributed clustering in wireless sensor networks. Journal of parallel and Distributed Computing, 70:371-383.
[16] Chao C. M, Hsiao T. Y. (2009) Design of structure-free and energy-balanced data aggregation in wireless sensor networks. 11th IEEE International Conference on High Performance Computing and Communications HPCC'09.
[17] Mahajan S, Malhotra J, Sharma S. (2014) An energy balanced QoS based cluster head selection strategy for WSN. Egyptian Informatics Journal, 15:189-199.
[18] Azharuddin M, Kuila P, Jana P. K. (2015) Energy efficient fault tolerant clustering and routing algorithms for wireless sensor networks. Computers & Electrical Engineering, 41:177-190.
[19] Krunz M, Siam M. Z, Nguyen D. N. (2013) Clustering and power management for virtual MIMO communications in wireless sensor networks. Ad Hoc Networks, 11:1571-1587.
[20] Ashouri M, Yousefi H, Basiri J, Hemmatyar A. M. A, Movaghar A. (2015) PDC: Prediction-based Data-aware Clustering in wireless sensor networks. Journal of Parallel and Distributed Computing, 81:24-35.
[21] Gong D, Yang Y, Pan Z. (2013) Energy-efficient clustering in lossy wireless sensor networks. Journal of Parallel and Distributed Computing, 73:1323-1336.
[22] Jain Y. K, Bhandare S. K. (2011) Min max normalization based data perturbation method for privacy protection. International Journal of Computer and Communication Technology, 2:45-50.
[23] Xinlian Z, Min W, Jianbo X. (2009) BPEC: an energy-aware distributed clustering algorithm in WSNs. J. Comput. Res. Dev, 46:723-730.
[24] Katiyar V, Chand N, Soni S. (2010) Clustering algorithms for heterogeneous wireless sensor network: A survey. International Journal of applied Engineering research Dindigul, 1:273-274.
Published
2018-06-01
How to Cite
Musavi Shirazi, S. M. B., sabet, maryam, & Pajoohan, M. R. (2018). A DISTRIBUTED ENERGY EFFICIENT CLUSTERING ALGORITHM FOR DATA AGGREGATION IN WIRELESS SENSOR NETWORKS. IIUM Engineering Journal, 19(1), 72 - 90. https://doi.org/10.31436/iiumej.v19i1.825
Section
Electrical, Computer and Communications Engineering