OPTIMIZATION OF RED PIGMENT PRODUCTION BY MONASCUS PURPUREUS FTC 5356 USING RESPONSE SURFACE METHODOLOGY

Authors

DOI:

https://doi.org/10.31436/iiumej.v19i1.814

Abstract

Factors such as environmental conditions and nutrients are significant for successful growth and reproduction of microorganisms. Manipulations of the factors are the most effective way to stimulate the growth of the microorganism, which can be used to optimize the yield of a product. In this study, Central Composite Design (CCD) of Response Surface Methodology (RSM) was used to optimize the production of red pigment by Monascus purpureus FTC 5356 using the petioles of oil palm fronds (OPF) as a substrate in solid state fermentation (SSF). The data was analyzed using Design Expert Software. The optimum combination predicted via RSM was confirmed through experimental work. The interactions between three variables such as initial moisture content (%), initial pH value (pH), and peptone concentration (%) were studied and modelled. The statistical analysis of the results showed that the optimal conditions for red pigment production 47 AU/g with the biomass of 425.1 mg/g was at 55% initial moisture content, 3% of peptone, and at pH 3.  The RSM results showed that the initial pH value had a significant effect on red pigment production (P-value <0.05). The validation of these results was also conducted by fermentation with predicted conditions and it was found that there was a discrepancy of 0.39% between the values of the experimental result and those of the predicted values.

ABSTRAK: Keadaan persekitaran dan nutrien merupakan faktor-faktor penting dalam pertumbuhan mikroorganisma. Manipulasi faktor-faktor tersebut adalah kaedah terbaik bagi meningkatkan pertumbuhan mikroorganisma dan mengoptimumkan penghasilan produk. Kajian ini mengguna pakai Rekaan Gabungan Pusat (CCD) melalui Kaedah Tindak balas Permukaan (RSM) bagi penghasilan pigmen merah optimum oleh Monascus purpureus FTC 5356 menggunakan batang pelepah kelapa sawit (OPF) sebagai perumah dalam proses penapaian pepejal (SSF). Data telah dianalisis menggunakan perisian Design Expert. Gabungan parameter optimum seperti cadangan RSM telah disahkan secara eksperimen. Interaksi antara tiga pemboleh ubah seperti kandungan lembapan awal (%), nilai pH awal (pH), dan kepekatan pepton (%) telah dikaji dan dimodelkan. Analisis statistik menunjukkan penghasilan optimal pigmen merah adalah pada 47 AU/g dengan biomas sebanyak 425.1 mg/g, pada 55% lembapan awal, 3% pepton dan pada pH 3. Hasil keputusan RSM menunjukkan pH awal memberikan kesan signifikan kepada penghasilan pigmen merah (nilai P <0.05). Pengesahan analisis juga telah dijalankan melalui proses penapaian dan hasil ujikaji mendapati 0.39% lebih tinggi daripada nilai jangkaan.

Downloads

Download data is not yet available.

References

[1] Hakim MA. (2015) Food coloring analysis in four selected dishes. American J. Biology and Life Sci., 395: 187-189.
[2] Miyake T, Isato K, Nobuyuki N, Sammoto H. (2008) Analysis of pigment composition in various Monascus cultures. Food Sci. and Technol. Res., 14: 194-197.
[3] Hamid NF, Said FM. (2016) Factorial design screening for the red pigment production by Monascus purpureus FTC 5356. Jurnal Teknologi, 78(11-2): 13-17.
[4] Poorniammal R, Gunasekaran G, Murugesan R. (2015) Statistical optimization of culture medium for yellow pigment production by Thermomyces sp. J. Appl. and Natural Sci., 7(1): 203-210.
[5] Ren X, He L, Cheng J, Chang J. (2014) Optimization of the solid state fermentation and properties of a polysaccharide from Paecilomyces cicadae (miquel) Samson and its antioxidant activities in vitro. Plos One, 9(2): e87578.
[6] Ajdari Z, Ebrahimpour A, Manan MA, Ajdari D, Abbasiliasi S, Hamid M, Mohamad R, Ariff AB. (2012) A statistical modeling study by response surface methodology and artificial neural networks on medium optimization for Monascus purpureus FTC 5391 sporulation. Minerva Biotech., 24: 71-81.
[7] Dikshit R, Tallapragada P. (2016) Statistical optimization of lovastatin and confirmation of nonexistence of citrinin under solid state fermentation by Monascus sanguineus. J. Food and Drug Analysis, 24: 433-440.
[8] Sani J, Montira N, Panit K, Taweerat V, Anan T. (2013) Statistical optimization for monakolin K and yellow pigment production and citrinin reduction by Monascus purpureus in solid state fermentation. J. Biotechnol. Microbiol., 23(3): 364-374.
[9] Prajapati VS, Soni N, Trivedi UB, Patel KC. (2013) An enhancement of red pigment production by submerged culture of Monascus purpureus MTCC 410 employing statistical methodology. Biocatalyst and Agricultural Biotechnol., 3: 140-145.
[10] Dikshit R, Tallapragada P. (2014) Collective effects of stress on optimization of pigment production by Monascus purpureus. Chiang Mai J. Sci., 41(3): 524-530.
[11] Ahmad M, Panda BP. (2014) Optimization of red pigment production by Monascus purpureus MTCC 369 under solid state fermentation using response surface methodology. Songklanakarin J. Sci. and Technol., 36(4): 439-444.
[12] Said FBM. (2010) Monascus ruber ICMP 15220 fermentation for the production of pigment. PhD Thesis. Massey University. New Zealand.
[13] Johns MR, Stuart and DM. (1991) Production of pigments by Monascus purpureus in solid culture. J. Industrial Microbiol., 8: 23-28.
[14] Lin TF, Demain AL. (1992) Fermentation of water soluble Monascus red pigments by biological and semi synthetic processes. J. Industrial Microbiol. 9: 173-179.
[15] Miller GL. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 31: 426-428.
[16] Roopesh K, Ramachandran S, Nampoothiri KM, Szakacs G, Pandey A. (2006) Comparison of phytase production of wheat bran and oil cakes in solid state fermentation by Mucor racemosus. Bioresource Technol., 97: 506-511.
[17] Swift MJ. (1973) The estimation of mycelial biomass by determination of the hexosamine content of wood tissue decayed by fungi. Soil Biology Biochem., 55: 321-332.
[18] Babitha S, Soccol CR, Pandey A. (2006) Jackfruit seed—A novel substrate for the production of Monascus pigments through solid state fermentation. Food Technol. Biotechnol. 44: 465–471.
[19] Noordin MY, Venkatesh VC, Sharif S, Elting S, Abdullah A. (2004) Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. J. Material Processing Technol., 145: 46-58.
[20] Orozco SFB, Kilikian BV. (2008) Effect of pH on citrinin and red pigment production by Monascus purpureus CCT3802. World J. Microbiol. and Biotechnol., 24: 263-268.
[21] Krishna C. (2005) Solid state fermentation system-An Overview. Critical review in Biotechnol., 25(1-2): 1-30.
[22] Babitha S, Soccol CR, Pandey A. (2007) Solid state fermentation for the production of Monascus pigment from jackfruit seed. Bioresource Technol., 98: 1554-1560.

Published

2018-06-01

How to Cite

M. Said, F., & Hamid, N. F. B. (2018). OPTIMIZATION OF RED PIGMENT PRODUCTION BY MONASCUS PURPUREUS FTC 5356 USING RESPONSE SURFACE METHODOLOGY. IIUM Engineering Journal, 19(1), 34 - 47. https://doi.org/10.31436/iiumej.v19i1.814

Issue

Section

Chemical and Biotechnology Engineering