• FAHIM FAYAZ Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang
  • NGUYEN THI ANH NGA Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho, District 7, Ho Chi Minh City
  • THONG LE MINH PHAM Institute of Research and Development, Duy Tan University, 03 Quang Trung, Danang
  • HUONG THI DANH Clean Energy and Chemical Engineering, Korea University of Science and Technology (UST), Daejeon, 305-350
  • BAWADI ABDULLAH Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak
  • HERMA DINA SETIABUDI Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang
  • DAI-VIET NGUYEN VO Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang




La-promoted and unpromoted 10%Co/Al2O3 catalysts were synthesized using wet a impregnation method and evaluated in a quartz fixed-bed reactor at different CO2:C2H5OH ratios of 2.5:1-1:2.5 and a reaction temperature of 973 K under atmospheric pressure. X-ray diffraction measurements detected the presence of Co3O4 and CoAl2O4 phases on the surface of both promoted and unpromoted catalysts. BET surface area of promoted and unpromoted 10%Co/Al2O3 catalysts was about 143.09 and 136.04 m2.g-1, respectively. The La promoter facilitated Co3O4 reduction, improved the degree of reduction from 86 to 98% and increased metal dispersion from 9.11% to 16.64%. The La-promoted catalyst appeared to be a better catalyst in terms of catalytic activity and product yield regardless of reactant partial pressure. Both C2H5OH and CO2 conversions improved significantly with an increase in CO2 partial pressure from 20 to 50 kPa for both catalysts whilst a decline in catalytic performance was observed with rising C2H5OH partial pressure. La addition improved C2H5OH and CO2 conversions up to about 74.22% and 33.80%, respectively.

ABSTRAK: Penggalak-La dan bukan penggalak-La mangkin 10%Co/Al2O3 dihasilkan menggunakan kaedah impregnasi basah dan dinilai dalam reaktor alas-tetap quarza pada pelbagai nisbah CO2:C2H5OH sebanyak 2.5:1-1:2.5 dan suhu tindak balas sebanyak 973 K di bawah tekanan atmosfera. Hasil daripada ukuran pembelauan X-ray, didapati terdapat kehadiran fasa Co3O4 dan CoAl2O4 pada permukaan kedua-dua mangkin penggalak dan bukan penggalak. Permukaan kawasan BET pada penggalak dan bukan penggalak mangkin 10%Co/Al2O3 adalah masing-masing sebanyak 143.09 dan 136.04 m2.g-1. Penggalak-La membantu dalam pengurangan Co3O4,membaiki peratus penurunan daripada 86 kepada 98% dan menambah penyebaran logam daripada 9.11% kepada 16.64%. Mangkin penggalak-La dilihat sebagai mangkin terbaik dari segi aktiviti pemangkinan dan hasil pengeluaran, biarpun pada tekanan separa reaktan. Kedua-dua penukaran C2H5OH dan CO2 meningkat dengan ketara dengan kenaikan separa tekanan CO2 daripada 20 kepada 50 kPa bagi kedua-dua pemangkin, sementara penurunan dalam aktiviti pemangkinan dilihat dengan kenaikan tekanan separa C2H5OH. Penambahan La meningkatkan penukaran C2H5OH dan CO2, masing-masing sebanyak 74.22% dan 33.80%.


Download data is not yet available.


[1] Haryanto A, Fernando S, Murali N, Adhikari S. (2005) Current status of hydrogen production techniques by steam reforming of ethanol: A review. Energy and Fuels, 19:2098-2106.
[2] Vo D.-VN, and Adesina AA. (2012) A potassium-promoted Mo carbide catalyst system for hydrocarbon synthesis. Catal. Sci. Technol, 2:2066-2076.
[3] Li D, Zeng L, Li X, Wang X, Ma H, Assabumrungrat S, Gong J. (2015) Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation. Appl. Catal. B Environ,176-177:532-541.
[4] Vicente J, Montero C, Ereña J, Azkoiti MJ, Bilbao J, Gayubo AG. (2014) Coke deactivation of Ni and Co catalysts in ethanol steam reforming at mild temperatures in a fluidized bed reactor. Int. J. Hydrogen Energy, 39:12586-12596.
[5] Cui W, Yuan X, Wu P, Zheng B, Zhang W, Jia M. (2015) Catalytic properties of γ-Al2O3 supported Pt–FeOx catalysts for complete oxidation of formaldehyde at ambient temperature R.S.C. Adv, 5:104330-104336.
[6] Chuah GK, Jaenicke S, Xu TH. (2000) The effect of digestion on the surface area and porosity of alumina. Microporous Mesoporous Mater, 37:345-353.
[7] Zhang Z, Hicks RW, Pauly TR, Pinnavaia TJ. (2002) Mesostructured forms of γ-Al2O3. J. Am. Chem. Soc, 124:1592-1593.
[8] Akiyama M, Oki Y, Nagai M. (2012) Steam reforming of ethanol over carburized alkali-doped nickel on zirconia and various supports for hydrogen production. Catal. Today, 181:4-13.
[9] Comas J, Marino F, Laborde M, Amadeo N. (2004) Bio-ethanol steam reforming on Ni/Al2O3 catalyst. Chem. Eng. J, 98:61-68.
[10] Yu X.-P, Chu W, Wang N, Ma F. (2011) Hydrogen production by ethanol steam reforming on NiCuMgAl catalysts derived from hydrotalcite-like precursors. Catal. Letters, 141:1228-1236.
[11] Zawadzki A, Bellido JDA, Lucrédio AF, Assaf EM. (2014) Dry reforming of ethanol over supported Ni catalysts prepared by impregnation with methanolic solution. Fuel Process Technol, 128:432-440.
[12] Torres JA, Llorca J, Casanovas A, Domínguez M, Salvadó J, Montané D. (2007) Steam reforming of ethanol at moderate temperature: Multifactorial design analysis of Ni/La2O3-Al2O3, and Fe- and Mn-promoted Co/ZnO catalysts. J. Power Sources, 169:158–166.
[13] Li M, Wang X, Li S, Wang S, Ma X. (2010) Hydrogen production from ethanol steam reforming over nickel based catalyst derived from Ni/Mg/Al hydrotalcite-like compounds. Int. J. Hydrogen Energy, 35:6699-6708.
[14] Mazumder J, De Lasa HI. (2014) Ni catalysts for steam gasification of biomass: Effect of La2O3 loading. Catal. Today, 237:100-110.
[15] Al-Fatesh AS, Naeem MA, Fakeeha AH, Abasaeed AE. (2014) Role of La2O3 as promoter and support in Ni/γ-Al2O3 catalysts for dry reforming of methane. Chinese J. Chem. Eng, 22:28-37.
[16] JCPDS Powder Diffraction File. (2000) International Centre for Diffraction Data. Swarthmore, PA.
[17] Patterson AL. (1939) The Scherrer formula for I-Ray particle size determination,” Phys. Rev, 56:978-982.
[18] Schanke D, Vada S, Blekkan EA, Hilmen AM, Hoff A, Holmen A. (1995) Study of Pt-promoted cobalt CO hydrogenation catalysts J. Catal, 156:85-95.
[19] Storsæter S, Tøtdal B, Walmsley JC, Tanem BS, Holmen A. (2005) Characterization of alumina-, silica-, and titania-supported cobalt Fischer-Tropsch catalysts. J. Catal, 236:139-152.
[20] Ewbank JL, Kovarik L, Kenvin CC, Sievers C. (2014) Effect of preparation methods on the performance of Co/Al2O3 catalysts for dry reforming of methane. Green Chem, 16:885-896.
[21] Fayaz F, Danh HT, Nguyen-Huy C, Vu KB, Abdullah B, Vo D.-VN. (2016) Promotional Effect of Ce-dopant on Al2O3-supported Co Catalysts for Syngas Production via CO2 Reforming of Ethanol. Procedia Eng, 148:646-653.
[22] Li X, Wu M, Lai Z, He F. Studies on nickel-based catalysts for carbon dioxide reforming of methane. Appl. Catal. A Gen, 290:81-86.
[23] Zhi G, Guo X, Guo X, Wang Y, Jin G. (2011) Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide. Catal. Commun, 16:56-59.
[24] Jankhah S, Abatzoglou N, Gitzhofer F. (2008) Thermal and catalytic dry reforming and cracking of ethanol for hydrogen and carbon nanofilaments’ production. Int. J. Hydrogen Energy, 33:4769-4779.
[25] Bahari MB, Phuc NHH, Abdullah B, Alenazey F, Vo D.-VN. (2016) Ethanol dry reforming for syngas production over Ce-promoted Ni/Al2O3 catalyst J. Environ. Chem. Eng, 4:4830-4838.
[26] Foo SY, Cheng CK, Nguyen TH, Adesina AA. (2011) Evaluation of lanthanide-group promoters on Co-Ni/Al2O3 catalysts for CH4 dry reforming. J. Mol. Catal. A Chem, 344:28-36.




How to Cite

FAYAZ, F., NGA, N. T. A., PHAM, T. L. M., DANH, H. T., ABDULLAH, B., SETIABUDI, H. D., & VO, D.-V. N. (2018). HYDROGEN PRODUCTION FROM ETHANOL DRY REFORMING OVER LANTHANIA-PROMOTED Co/Al2O3 CATALYST. IIUM Engineering Journal, 19(1), 24–33. https://doi.org/10.31436/iiumej.v19i1.813



Chemical and Biotechnology Engineering