• Yusuf Ergashivich Fayziev National University of Uzbekistan




Mathematical models of thermo control processes in a rectangular plate are considered. In the model under consideration, the temperature inside a plate is controlled by heat exchange through one boundary while the other three are insulated. The control parameter is a function that satisfies certain integral equations. Sufficient conditions for achieving the given projection of the temperature at a fixed point on the plate and given average temperature are studied.

ABSTRAK: Model matematik bagi proses kawalan suhu dalam bekas segi empat tepat telah dipilih. Melalui model ini, suhu bekas dikawal dengan menukar haba melalui salah satu sisi bekas, manakala tiga sisi lain telah ditebat. Parameter kawalan ini ialah fungsi, di mana ia sesuai dengan persamaan sesetengah integral. Keadaan sesuai bagi mencapai suhu tetap bekas seperti cadangan dan suhu purata yang diberikan turut dikaji.


Download data is not yet available.


Metrics Loading ...

Author Biography

Yusuf Ergashivich Fayziev, National University of Uzbekistan

department: Differential Equation and Mathematical Physics, Faculty of Mathematics, dotsent


[1] Tikhonov AN, Samarsky AA. (1966) Equations of Mathematical Physics. Nauka, Moscow (in Russian)
[2] Lions JL. (1968) Contrôle Optimal de Systèmes Gouvernés par des Équations aux Dérivées Partielles. Dunod Gauthier-Villars, Paris
[3] Il’in VA. (2000) Differential equations. 36:1670-1686
[4] Il’in VA, Moiseev EI. (2005) Progress Math. Scien., 60(6):89-114. (in Russian).
[5] Il’in VA, Moiseev EI. (2006) Doc. Acad. Scien. Russian. 411(6):736-740. (in Russian).
[6] Fattorini HO. (2002) Time and norm optimal control for linear parabolic equations: necessary and sufficient conditions. In: Control and Estimation of Distributed Parameter Systems. International Series of Numerical Mathematics, 143:151-168. Birkhäuser, Basel
[7] Barbu V, Rascanu A, Tessitore G. (2003) Carleman estimates and controllability of linear stochastic heat equations. Appl. Math. Optim., 47(2):97-120.
[8] Alimov ShO. (2005) On a control problem associated with the Heat Exchange Process, Uz. Маth. Jur. 4:13-21, (in Russian).
[9] Alimov ShO. (2008) On a control problem associated with the Heat Exchange Process. Doc. Acad. Scien. Russian, 421(5):583-585, (in Russian).
[10] Alimov ShO, Albeverio S. (2008) On a Time-Optimal Control Problem Associated with the Heat Exchange Process, Appl. Math. Optim. 57: 58-68.
[11] Alimov ShO. (2010) On a control problem associated with the heat transfer process, Eurasian mathematical journal, 1(2):17- 30.
[12] Alimov ShO. (2011) On the null-controllability of the heat exchange process, Eurasian mathematical journal, 2(3):5- 19.
[13] Fayziev YuE, Khalilova N. (2016) On a control problem associated with the heat transfer process, Вестник НУУз, 2/1:49-54, (in Russian).




How to Cite

Fayziev, Y. E. (2018). ON THE CONTROL OF THE HEAT CONDUCTION. IIUM Engineering Journal, 19(1), 168–177. https://doi.org/10.31436/iiumej.v19i1.796



Engineering Mathematics and Applied Science