• L Prabhu Department of Mechanical Engineering, National Institute of Technology, Rourkela, India.
  • J Srinivas Department of Mechanical Engineering, National Institute of Technology, Rourkela, India.




This paper presents the effects of airfoil geometry on flow separation behavior and obtains the transition patterns at a specific angle of attack. A strong adverse pressure gradient field is observed at the leading edge of the airfoil, and it results in a flow detachment. Leading edge flow separation is studied along with the variation of skin friction coefficient over the airfoil. Novelty in the approach is the development of a hybrid control scheme to delay the flow separation with blowing/suction of air (termed active control) over the airfoil together with the tapping of flow from the pressure side as in a classical passive control procedure. The active controller delays the flow separation, while the passive controller is used to reduce the drag coefficient significantly and increases the total performance of an airfoil. The effectiveness of these controls is examined by varying the control parameters including blowing/suction velocity, the position of the slot in terms of percentage of chord and size of the slot. All the numerical simulations are carried out using ANSYS-Fluent software. A surrogate model is also developed to predict the aerodynamic characteristics conveniently without much computational effort. The outcome of this study reveals that the blowing/suction velocity has a higher influence in delaying the flow separation.

ABSTRAK: Kertas ini membentangkan tentang kesan geometri aerofoil pada perubahan pemisah aliran udara dan memperoleh bentuk peralihan pada darjah yang tepat. Terdapat tekanan kuat yang tidak sesuai pada kawasan kecerunan di hujung hadapan permukaan aerofoil, dan ini menyebabkan aliran udara terpisah. Pemisah aliran udara pada hujung hadapan ini dikaji bersama koefisien geseran pada permukaan aerofoil. Pendekatan baru pada kaedah ini adalah berkaitan pembangunan skim kawalan hibrid bagi melengahkan aliran pemisah udara melalui tiupan/sedutan udara (kawalan aktif) ke atas aerofoil bersama ketukan pada aliran dari tepi tekanan seperti mana prosedur klasik kawalan pasif. Kawalan aktif ini melengahkan aliran pemisah udara, sebaliknya kawalan pasif telah digunakan bagi mengurangkan koefisien penangguhan dengan ketara dan menambahkan jumlah prestasi aerofoil. Keberhasilan kawalan-kawalan ini dikaji dengan mengubah parameter kawalan termasuk kelajuan tiupan/sedutan udara, posisi slot berdasarkan peratusan garis temu dan saiz slot. Semua simulasi-simulasi numerikal ini dijalankan menggunakan perisian Ansys-Fluent. Model pengganti turut dibangunkan untuk menjangka ciri-ciri aero-dinamik dengan mudah tanpa usaha pengiraan yang banyak. Keputusan kajian ini mendedahkan tentang kelajuan tiupan/sedutan udara berpengaruh besar dalam melambatkan pemisahan aliran udara.


Download data is not yet available.


Metrics Loading ...


[1] Currie IG. (2013) Fundamental mechanics of fluids, CRC Press, Boca Raton.
[2] Anderson JD. (2011) Fundamentals of Aerodynamics, McGRAW HILL, New York.
[3] Amitay M, Glezer A. (2002) Controlled transients of flow reattachment over stalled airfoils. Int J Heat Fluid Fl, 23(5):690-699.
[4] Duvigneau R, Visonneau M. (2003) Simulation and optimization of stall control for an airfoil with a synthetic jet. Aerosp Sci Technol, 10(4):279-287.
[5] Rumsey CL, Nishino T. (2011) Numerical study comparing RANS and LES approaches on a circulation control airfoil. Int J Heat Fluid Fl, 32(5):847-864.
[6] Azim R, Hasan MM, Ali M. (2015) Numerical investigation on the delay of boundary layer separation by suction for NACA 4412. Procedia Eng, 105:329-334.
[7] Ghadimi P, Rostami AB, Jafarkazemi F. (2012) Aerodynamic analysis of the boundary layer region of symmetric airfoils at ground proximity. Aerosp Sci Technol, 17(1):7-20.
[8] Favier J, Pinelli A, Piomelli U. (2012) Control of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippers. Comptes Rendus Mécanique, 340(1-2):107-114.
[9] Lin YF, Lam K, Zou L, Liu Y. (2013) Numerical study of flows past airfoils with wavy surfaces. J. Fluids Struct, 36:136-148.
[10] Faruqui SHA, Bari MAA, Emran M, Ahsan F. (2014) Numerical Analysis of Role of Bumpy Surface to Control the Flow Separation of an Airfoil. Procedia Eng, 90:255-260.
[11] Zhang W, Cheng W, Gao W, Ravi S. (2015) Geometrical effects on the airfoil flow separation and transition. Comput. Fluids, 116:60-73.
[12] Belamadi R, Djemili A, Ilinca A, Mdouki R. (2016) Aerodynamic performance analysis of slotted airfoils for application to wind turbine blades. J. Wind Eng. Ind. Aerodyn, 151:79-99.
[13] Fouatih OM, Medale M, Imrine O, Imine B. (2016) Design optimization of the aerodynamic passive flow control on NACA 4415 airfoil using vortex generators. Eur J Mech B-Fluid, 56:82-96.
[14] Eppler R. (1999) Airfoils with boundary layer suction, design and off-design cases. Aerosp. Sci. Technol, 3(7):403–415.
[15] Jiao Y, Lu Y. (2015) Parameter Optimization Research on Lift-enhancing of Multi-element Airfoil Using Air-blowing. Procedia Eng, 99:73–8.
[16] Zhao G, Zhao Q. (2014) Parametric analyses for synthetic jet control on separation and stall over rotor airfoil. Chin. J. Aeronaut, 27(5):1051–1061.
[17] Chapin VG, Benard E. (2015) Active control of a stalled airfoil through steady or unsteady actuation jets. J. Fluids Eng, 137(9): 091103.
[18] Gilarranz JL, Traub LW, Rediniotis OK. (2005) A new class of synthetic jet actuators-part II: application to flow separation control. J. Fluids Eng, 127(2):377-387.
[19] You D, Moin P. (2008) Active control of flow separation over an airfoil using synthetic jets application to flow separation control. J. Fluids Struct, 24(8):1349–1357.
[20] Tang H, Salunkhe P, Zheng Y, Du J, Wu Y. (2014) On the use of synthetic jet actuator arrays for active flow separation control. Exp. Therm. Fluid Sci, 57:1–10.
[21] Wang L, Li L, Fu S. (2014) Numerical Investigation of Active Flow Control on a Pitching NACA 0015 Airfoil Using Detached-eddy Simulation. Procedia Eng, 79:49–54.
[22] Hossain MA, Uddin MN, Islam MR, Mashud M: Enhancement of Aerodynamic Properties of an Airfoil by Co Flow Jet (CFJ) Flow. Am. J. Eng. Res 2015, 4: 103–112.
[23] Genc MS, Kaynak U. (2009) Control of laminar separation Bubble over a NACA 2415 aerofoil at low Re transitional flow using blowing/suction. In: 13th International conference on Aerospace sciences and aviation technology: 26th-28th May, Egypt.
[24] Shi Y, Bai J, Hua J, Yang T. (2015) Numerical analysis and optimization of boundary layer suction on airfoils. Chin. J. Aeronaut, 28(2):357–367.
[25] Skarolek V, Karabelas J. (2016) Energy efficient active control of the flow past an aircraft wing: RANS and LES evaluation. Applied Mathematical Modelling, 40(2):700-725.
[26] Ali IS, Ahmed SS. (2011) Modelling of turbulent separation flow. World Academy of Science, Engineering and technology, 76:866-876.
[27] Kuwahara K, Surugadai S. (2000) Direct simulation of a flow around an airfoil. Available: http://www2.nagare.or.jp/jscfd/cfds14/pdf/b05-2.pdf.
[28] Guan X, Zhu Y, Song W. (2016) Application of RBF neural network improved by peak density function in intelligent color matching of wood dyeing. Chaos, Solitons &Fractals, 89:485-490.
[29] Rooki R. (2016) Application of general regression neural network (GRNN) for indirect measuring pressure loss of Herschel-Bulkley drilling fluids in oil drilling. Measrurement, 85:184-191.
[30] Walters DK, Cokljat DA. (2008) Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier–Stokes Simulations of Transitional Flow. J. Fluids Eng, 130(12):121401.




How to Cite

Prabhu, L., & Srinivas, J. (2018). A PARAMETRIC STUDY ON CONTROL OF FLOW SEPARATION OVER AN AIRFOIL IN INCOMPRESSIBLE REGIME. IIUM Engineering Journal, 19(1), 270–288. https://doi.org/10.31436/iiumej.v19i1.784



Mechanical and Aerospace Engineering