THE EFFECTS OF CABLE CHARACTERISTICS ON MAXIMUM OVERVOLTAGE IN COMBINED OVERHEAD/CABLE LINES PROTECTED BY SURGE ARRESTERS

Authors

  • Reza Alizadeh
  • Mohammad Mirzaie

DOI:

https://doi.org/10.31436/iiumej.v19i1.707

Abstract

 This paper presents the calculation of maximum lightning overvoltage for a transmission system consisting of overhead lines in combination with an underground power cable. For this purpose, a 132 kV overhead transmission line combined with an underground cable is considered. This combined line has been protected by surge arresters. EMTP-RV and MATLAB software are used to conduct the modeling, simulation and calculation works. Lightning strikes on the tower top and results in large over-voltages appearing along overhead lines and cable. Underground cable characteristics have significant effects on maximum lightning over-voltages. Therefore, the three characteristics considered for these effects are: (i) cable length; (ii) cable core resistivity, (iii) cable sheath resistivity. Tower footing resistance effect is also included in the computer simulation.

ABSTRAK: Kajian ini berkenaan tentang pengiraan takat maksimum voltan kilat berlebihan bagi sistem transmisi melibatkan kabel atas kepala termasuk kabel tenaga bawah tanah. Bagi tujuan ini, talian kabel penghantaran atas kepala 132 kV termasuk kabel bawah tanah telah diambil kira. Kombinasi kabel ini dilindungi dengan penahan lonjakan voltan tenaga. Perisian EMTP-RV dan MATLAB telah digunakan untuk membuat model, simulasi dan kerja-kerja pengiraan. Panahan petir di atas puncak bangunan merupakan penyebab utama voltan berlebihan muncul bersama talian atas kepala dan kabel. Ciri-ciri kabel bawah tanah merupakan faktor penyumbang utama ke atas voltan berlebihan daripada kilat. Oleh itu, tiga kes telah diambil kira sebagai penyumbang voltan berlebihan: (i) panjang kabel; (ii) rintangan teras kabel, (iii) rintangan sarung kabel. Kesan rintangan tapak bangunan turut diambil kira dalam simulasi komputer.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

[1] Transpower Report. (2005) Comparison of Reliability of a 400 kV Underground Cable with an Overhead Lines for a 200 km long circuit.
[2] Transpower Report. (2005) Effect of Short Cable Sections on Reliability of a 400 kV Overhead Line.
[3] Henriksen MT, Gustavsen B, Balog G, Baur U. (2005) Maximum Lightning Overvoltage Along a Cable Protected by Surge Arresters. IEEE Transactions on Power Delivery, 20(2):859-866.
[4] Sadeh J, Damchi Y. (2010) Maximum lightning overvoltage location and reliability indices in power system with combined transmission line. In Transmission and Distribution Conference and Exposition: Latin America (T&D-LA), 2010 IEEE/PES, pp. 212-217, IEEE.
[5] Balog G. (2005) Transient Voltages Affecting Long Cables. report of CIGRE WG B1-05, Technical brochure no. 269 from CIGRE.
[6] IEEE Std C62.82.1-2010 (Revision of IEEE Std 1313.1-1996) IEEE Standard for Insulation Coordination--Definitions, Principles and Rules.
[7] Zhou LM, Boggs SA. (2002) Effect of shielded distribution cables on lightning-induced overvoltages in a distribution system. IEEE Trans, on Power Delivery, 17(2):569-574.
[8] Martinez JA, Gonzalez-Molina F. (2000) Surge Protection of Underground Distribution Cables. IEEE Transactions on Power Delivery, 15(2):756-763.
[9] Hosseini SA, Mirzaie M, Barforoshi T. (2015) Impact of surge arrester number and placement on reliability and lightning overvoltage level in high voltage substations. International Journal of Electrical Power & Energy Systems, 65:146-158.
[10] Marzinotto M. (2007) Relationship Between Statistical Distributions of Impinging and Stressing Overvoltages in Power Cable Lines. IEEE Lausanne Power Tech, pp. 1911-1916.
[11] Marzinotto M, Mazzetti C, Schiaffino P. (2005) Statistical Approach to the Insulation Coordination of Medium and High Voltage Cable Lines. IEEE Power Tech.
[12] Marti L, Dommel HW. (1997) Calculation of voltage profiles along transmission lines. IEEE Trans, Power Del, 12(2): 993-998.
[13] Miguel C, Ramirez A. (2014) Frequency-domain computation of maximum lightning overvoltage along a cable protected by surge arresters. North American Power Symposium (NAPS), IEEE.
[14] Oramus P, Florkowski M. (2014) Simulations of lightning overvoltages in HV electric power system for various surge arresters and transmission lines models. PrzeglÄ…d Elektrotechniczny, 90(10):137-140.
[15] IEEE Modeling and Analysis of System Transients Working Group. (1996) Modeling guidelines for fast transient. IEEE Trans, Power Del, 11(1): 493-506.
[16] Ametani A, Kawamura T. (2005) A method of a lightning surge analysis recommended in Japan using EMTP. IEEE Trans, Power Del, 20(2, pt. 1):867-875.

Downloads

Published

2018-06-01

How to Cite

Alizadeh, R., & Mirzaie, M. (2018). THE EFFECTS OF CABLE CHARACTERISTICS ON MAXIMUM OVERVOLTAGE IN COMBINED OVERHEAD/CABLE LINES PROTECTED BY SURGE ARRESTERS. IIUM Engineering Journal, 19(1), 104–116. https://doi.org/10.31436/iiumej.v19i1.707

Issue

Section

Electrical, Computer and Communications Engineering