• Abul Hossain BUET
  • Fahmida Gulshan
  • A. S. W. Kurny BUET



This paper focuses the effect of Cu additions on tensile properties of Al-6Si-0.5Mg alloy at various strain rates and electrochemical corrosion behavior. The additions of Cu resulted in an increase in tensile strength and showed higher strength all over the experimental strain rates. Evaluations of tensile properties at the three different strain rates (10-4, 10-3 & 10-2s-1) showed that they affected the tensile properties significantly. The strength was better at higher strain rate but ductility was poor. Eelectrochemical impedance spectroscopy (EIS) and potentiodynamic polarisation have been used to evaluate the corrosion resistance of Cu free and 0.5wt% Cu content Al-6Si-0.5Mg alloy in 0.1M NaCl solution. The 0.5wt% Cu addition to the Al-6Si-0.5Mg alloy showed that Cu decreased susceptibility to corrosion compared to the Cu free Al-6Si-0.5Mg alloy. The magnitude of open circuit potential (OCP), corrosion potential (Ecorr) and pitting corrosion potential (Epit) of Al-6Si-0.5Mg alloy were shifted to the more noble direction due to 0.5wt% Cu addition and thermal modification.


Download data is not yet available.


Metrics Loading ...


[1] J. G. Kaufman and E. L. Rooy, “Aluminium alloy castings, Properties, Processes and applications”, ASM International, 2004.

[2] L. Ceschini, Al. Morri, An. Morri and G. Pivetti, “Predictive equations of the tensile properties based onalloy hardness and microstructure for an A356 gravity die cast cylinder head”, Materials and design, vol.32 pp. 1367–1375, 2011.

[3] M. H. Jacobs, Precipitation Hardening, TALAT Lecture 1204, European Aluminium Association, 1999.

[4] S. Shivkumar, C. Keller and D. Apelian, “Aging Behavior in Cast Al-Si-. Mg Alloys”, AFS Transac-tions, vol. 98, pp. 905-911, 1990.

[5] J. Lendvai, T. Ungár and I. Kovács, “The Effect of the Temperature of Solution Treatment and Quench-ing on the Zone Formation Process in Al-Mg-Si Alloys", Materials Science and Engineering, vol. 16,pp. 85-89, 1974.

[6] I. Dutta and S. M. Allen, “A calorimetric study of precipitation in commercial aluminium alloy 6061”, Jour-nal of Materials Science Letters, vol. 10, pp. 323-326, 1991.

[7] I.C. Barlow, W. M. Rainforth, and H. Jones, “The role of silicon in the formation of the (Al5Cu6Mg2) r phase in Al–Cu–Mg alloys” J Mater.Sci., vol.35, pp.1413–1418, 2000.

[8] W. Reif, S.Yu, , J. Dutkiewicz, , R. Ciach, J. Kro´l, “Pre-ageing of AlSiCuMg alloys in relation to structure and mechanical properties” Mater Des, vol.18, pp. 253–256, 1997.

[9] R. K. Mishra, G.W.Smith, W. J Baxter, A.K. Sachdev, and V. Franetovic, The sequence of precipitation in 339 aluminum castings. J Mater Sci. vol.36, pp. 461–8, 2001.

[10] L. D. Oosterkamp, A. Ivankovic, and G. Venizelos, “High strain rate properties of selected aluminium alloys” Mechanical Science and Engineering A, vol. 278, pp.225–235, 1999.

[11] Aa. Reyes, O.S. Hopperstad, O.G Lademo, and M. Langseth, “Modeling of textured aluminum alloys used in a bumper system: material tests and characterization”, Computational Materials Science, vol. 37, pp.246–268, 2006.

[12] T. Børvik, , A. H. Clausen, M.Eriksson, , T. Berstad, , O.S.Hopperstad, , and M. Langseth, “Experimental and numerical study on the perforation of AA6005-T6 panels” International Journal of Impact Engineering, vol. 32, pp. 35–64, 2005.

[13] 18. S. Zor, M. Zeren, H. Ozkazance, E. Karakulak, “Effect of Cu content on the corrosion of Al-Si eutectic alloys in acidic solution”, Anti-Corrosion Methods and Materials, vol.57, pp.185-191, 2010.

[14] 9. G.M. Scamans, J. A. Hunter, N. J. H. Holroyd, “Corrosion of aluminium – a new approach”, Proc. of 8th Inter. Light metals Congress, Leoban Wien, pp.699-705. 1989,

[15] M. Czechowski, “Effect of anodic polarization on stress corrosion cracking of some aluminium alloy”, Adv. Mater Sci., vol.7, pp.13-20,2007.

[16] G. Svenningsen, M. H. Larsen, J.H. Nordlien, K. Nisancioglu, “Effect of high temperature heat treatment on intergranular corrosion of Al-Mg-Si(Cu) model alloy”, Corros. Sci., vol.48, pp.258–272, 2006.

[17] G. Svenningsen, M.H. Larsen, “Effect of artificial aging on intergranular corrosion of extruded Al-Mg-Si alloy with small Cu content”, Corros. Sci., vol.48, pp.1528–1543, 2006.

[18] G. Svenningsen, M.H. Larsen, “Effect of thermomechanical history on intergranular corrosion of extruded AlMgSi(Cu) model alloy”, Corros. Sci., vol.48, pp.3969–3987, 2006.

[19] G. Svenningsen, J.E. Lein, A. Bjorgum, J.H. Nordlien, K. Nisancioglu, “Effect of low copper content and heat treatment on intergranular corrosion of model AlMgSi alloys”, Corros. Sci., vol.48, , pp.226-242, 2006.

[20] M. H. Larsen, J. C. Walmsley, “Significance of low copper content on grain boundary nanostructure and intergranular corrosion of AlMgSi(Cu) model alloys”, Mater. Sci. Forum, vol.519-521, pp.667-671, 2006,

[21] H. Zhan, J. M. C. Mo, F. Hannour, L. Zhuang, H. Terryn, J. H. W. de Wit, “The influence of copper content on intergranular corrosion of model AlMgSi(Cu) alloys”, Materials and Corrosion, vol.59, pp.670–675, 2008.




How to Cite

Hossain, A., Gulshan, F., & Kurny, A. S. W. (2016). STUDIES ON TENSILE PROPERTIES AT VARIOUS STRAIN RATES AND CORROSION BEHAVIOR OF PEAKAGED AL-6SI-0.5MG (-0.5CU) ALLOYS. IIUM Engineering Journal, 17(2), 105–115.