EXTRACTION AND QUANTITATIVE DETERMINATION OF ASCORBIC ACID FROM BANANA PEEL MUSA ACUMINATA ‘KEPOK’

Authors

  • Khairul Anwar Mohamad Said Universiti Malaysia Sarawak
  • Zainab Radzi Universiti Malaysia Sarawak
  • Ibrahim Yakub Universiti Malaysia Sarawak
  • Mohamed Afizal Mohamed Amin Universiti Malaysia Sarawak

DOI:

https://doi.org/10.31436/iiumej.v17i1.576

Abstract

This paper discusses the extraction of an antioxidant compound, which is ascorbic acid or vitamin C, from a banana peel using an ultrasound-assisted extraction (UAE) method. The type of banana used was Musa acuminata also known as “PisangKepok†in Malaysia. The investigation includes the effect of solvent/solid ratio (4.5, 5 g and 10  ml/g), sonication time (15, 30 and 45 mins) and temperature variation (30 , 45  and 60oC ) on the extraction of ascorbic acid compounds from the banana peel to determine the best or optimum condition of the operation. Out of all extract samples analyzed by redox titration method using iodine solution, it was found that the highest yield was 0.04939 ± 0.00080 mg that resulted from an extraction at 30oC for 15 mins with 5 ml/g solvent-to-solute ratio.

KEYWORDS:  Musa acuminata; ultrasound-assisted extraction; vitamin C; redox titration


Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

[1] Allen BM. (1975) Common malaysian fruits, Longman Malaysia Sdn. Bhd., Selangor.

[2] N.W. Simmonds, K. Shepherd (1955), The taxonomy and origins of the cultivated bananas., J. Linn. Soc. London, Bot. 55:302–312.

[3] Shian TE, Abdullah A, Musa KH, Maskat MY, Ghani MA. (2012) Antioxidant properties of three banana cultivars (Musa acuminata “Berangan”,’Mas' and “Raja”) extracts. Sains Malaysiana, 41:319-324.

[4] Aurore G, Parfait B, Fahrasmane L. (2009) Bananas, raw materials for making processed food products. Trends Food Sci. Technol. 20:78-91.

[5] Hassan NMM. (2004) Banana R & D in Malaysia: Update and highlights, in: V.D.B.I.& M.M.A.G. Molina A. B., Eusebio J.E., Roa V.N. (eds.), Adv. Banan. Plantain R D Asia Pacific, vol. 12, INIBAP, Jakarta.

[6] Happi Emaga T, Andrianaivo RH, Wathelet B, Tchango JT, Paquot M. (2007) Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chem., 103:590-600.

[7] Abdullah FC, Yap LV, Mohammad Wali Y, Sundaraj HS, Khamis S. (2011) Peeling the Scientific Facts of Banana. International Islamic Academy for Life Sciences & Biotechnology, Universiti Selangor., Shah Alam, Selangor. pg 9-24.

[8] Ahnwange B, Ugye T, Nyiaatagher TD. (2009) Chemical composition of Musa sapientum (banana) peels. Electron. J. Environ. Agric. Food Chem., 8:437-442.

[9] Orhan I. (2001) Biological activities of Musa species. J. Fac.Farm., 30:39-50.

[10] Someya S, Yoshiki Y, Okubo K. (2002) Antioxidant compounds from bananas (Musa cavendish). Food Chem., 79:351-354.

[11] Kanazawa K, Sakakibara H. (2000) High content of dopamine, a strong antioxidant, in Cavendish banana. J. Agric. Food Chem., 48:844-848.

[12] Lim YY, Lim TT, Tee JJ. (2007) Antioxidant properties of several tropical fruits: A comparative study. Food Chem., 103:1003-1008.

[13] Knapp FF, Nicholas HJ. (1969) The sterols and triterpenes of banana peel. Phytochemistry, 8:207-214.

[14] Sebastian M, Padayatty J, Sun H, Wang Y, Riordan HD, Hewitt SM, Katz A, Wesley RA, Levine M. (2004) Implications for Oral and Intravenous Use, Annals of Internal Medicine 140:533–537.

[15] Fadhel D. (2012) Spectrophotometric determination of ascorbic acid in aqueous solutions. Jnus. Org., 15:88-94.

[16] Pisoschi AM, Pop A, Serban AI, Fafaneata C. (2014) Electrochemical methods for ascorbic acid determination, Electrochim. Acta., 121:443-460.

[17] Ensafi A, Rezaei B, Movahedinia H. (2002) Kinetic-spectrophotometric determination of ascorbic acid by inhibition of the hydrochloric acid-bromate reaction. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 58:2589-94.

[18] Güçlü K, Sözgen K, Tütem E, Özyürek M, Apak R. (2005) Spectrophotometric determination of ascorbic acid using copper(II)-neocuproine reagent in beverages and pharmaceuticals. Talanta, 65:1226-32.

[19] Noroozifar M, Khorasani-Motlagh M. (2003) Solid-phase iodine as an oxidant in flow injection analysis: Determination of ascorbic acid in pharmaceuticals and foods by background correction. Talanta, 61:173-9.

[20] Dong YP, Gao TT, Chu XF, Chen J, Wang CM. (2014) Flow injection-chemiluminescence determination of ascorbic acid based on luminol–ferricyanide–gold nanoparticles system, J. Lumin., 154:350-355.

[21] Zhang G, He L, M.(2011) Optimized ultrasonic-assisted extraction of flavonoids from Prunella vulgaris L. and evaluation of antioxidant activities in vitro. Innovative Food Science and Emerging Technologies 12:18–25.

[22] Pan Y, Wang K, Huang S, Wang H, Mu X, He C, et al. (2008) Antioxidant activity of microwave-assisted extract of longan (Dimocarpus longan Lour.) peel. Food Chem.,106:1264-1270.

[23] Hayat K, Zhang X, Farooq U, Abbas S, Xia S, Jia C, et al. (2010) Effect of microwave treatment on phenolic content and antioxidant activity of citrus mandarin pomace. Food Chem.,123:423-429.

[24] Qu X, Fu Y, Luo M, Zhao C, Zu Y. (2013) Acidic pH based microwave-assisted aqueous extraction of seed oil from yellow horn (Xanthoceras sorbifolia Bunge.), Industrial Crops and Products, 43:420–426.

[25] Yang B, Zhao M, Shi J, Yang N, Jiang Y. (2008) Effect of ultrasonic treatment on the recovery and DPPH radical scavenging activity of polysaccharides from longan fruit pericarp. Food Chem., 106:685-690.

[26] Aybastıer Ö, Işık E, Şahin S, Demir C. (2013) Optimization of ultrasonic-assisted extraction of antioxidant compounds from blackberry leaves using response surface methodology. Ind. Crops Prod., 44:558-565.

[27] Ramandi NF, Ghassempour A, Najafi NM, Ghasemi E. (2012) Optimization of ultrasonic assisted extraction of fatty acids from Borago officinalis L. flower by central composite design. Arabian Journal of Chemistry.

[28] Huang W, Li Z, Niu H, Li D, Zhang J. (2008) Optimization of operating parameters for supercritical carbon dioxide extraction of lycopene by response surface methodology. J. Food Eng., 89:298-302.

[29] Passos CP, Silva RM, Da Silva FA, Coimbra MA, Silva CM. (2010) Supercritical fluid extraction of grape seed (Vitis vinifera L.) oil: Effect of the operating conditions upon oil composition and antioxidant capacity. Chem. Eng. J., 160:634-640.

[30] Mazzutti S, Ferreira SRS, Riehl CAS, Smania A, Smania FA, Martínez J. (2012) Supercritical fluid extraction of Agaricus brasiliensis: Antioxidant and antimicrobial activities. J. Supercrit. Fluids, 70:48-56.

[31] Wang L, Weller CL. (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol., 17:300-312.

[32] Kwiatkowska B, Bennett J, Akunna J, Walker GM, Bremner DH. (2011) Stimulation of bioprocesses by ultrasound. Biotechnol. Adv., 29:768-780.

[33] Suslick KS, Othmer K. (1998) Encyclopedia of Chemical Technology, 4th edn., J. Wiley & Sons, New York.

[34] Mason T, Lorimer JP. (1998) Sonochemistry, theory, applications and uses of ultrasound in chemistry. Ellis Harwood Limited, Chichester West Sussex.

[35] Lee WC, Yusof S, Hamid NSA, Baharin BS. (2006) Optimizing conditions for hot water extraction of banana juice using response surface methodology (RSM). J. Food Eng., 75:473-479.

[36] González-Montelongo R, Gloria Lobo M, González M. (2010) Antioxidant activity in banana peel extracts: Testing extraction conditions and related bioactive compounds. Food Chem., 119:1030-1039.

[37] Valdramidis V, Cullen P. (2010) Quantitative modelling approaches for ascorbic acid degradation and non-enzymatic browning of orange juice during ultrasound processing. Journal of Food Engineering, 96:449–454.

[38] Blasco R, Esteve MJ, Frígola A, Rodrigo M. (2004) Ascorbic acid degradation kinetics in mushrooms in a high-temperature short-time process controlled by a thermoresistometer, LWT. Food Sci. Technol., 37:171-175.

[39] Vieira MC, Teixeira AA, Silva CLM. (2000) Mathematical modeling of the thermal degradation kinetics of vitamin C in cupuacu (Theobroma grandiflorum) nectar. J. Food Eng., 43:1-7.

[40] Rathod SS, Rathod VK. (2014) Extraction of piperine from Piper longum using ultrasound. Ind. Crops Prod., 58:259-264.

[41] Tian Y, Xu Z, Zheng B, Martin Lo Y. (2013) Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) seed oil. Ultrason. Sonochem., 20:202-208.

[42] Zhang H, Yang X, Zhao L, Wang Y. (2009) Ultrasonic-assisted extraction of epimedin C from fresh leaves of Epimedium and extraction mechanism. Innovative Food Science and Emerging Technologies, 10:54–60.

[43] Teng H, Choi YH. (2014) Optimization of ultrasonic-assisted extraction of bioactive alkaloid compounds from rhizoma coptidis (Coptis chinensis Franch.) using response surface methodology. Food Chem., 142:299-305.

[44] Shirsath SR, Sonawane SH, Gogate PR. (2012) Intensification of extraction of natural products using ultrasonic irradiations - A review of current status. Chem. Eng. Process. Process Intensif., 53:10-23.

[45] Becker EM, Nissen LR, Skibsted LH. (2004) Antioxidant evaluation protocols: Food quality or health effects. Eur. Food Res. Technol., 6:561-571.

[46] Liu J, Zheng S, Fan Q, Yuan J, Yang S. (2015) Optimisation of high-pressure ultrasonic-assisted extraction and antioxidant capacity of polysaccharides from the rhizome of Ligusticum chuanxiong. Int. J. Biol. Macromol., 76:80-85.

[47] Pongmalai P, Devahastin S, Chiewchan N, Soponronnarit S. (2015) Enhancement of microwave-assisted extraction of bioactive compounds from cabbage outer leaves via the application of ultrasonic pretreatment. Sep. Purif. Technol., 144:37-45.

[48] Prakash Maran J, Manikandan S, Thirugnanasambandham K, Vigna Nivetha C, Dinesh R. (2013) Box-Behnken design based statistical modeling for ultrasound-assisted extraction of corn silk polysaccharide. Carbohydr. Polym., 92:604-611.

[49] Åžahin S, Åžamli R. (2013) Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrason. Sonochem., 20:595-602.

[50] Liu X, Mu T, Sun H, Zhang M, Chen J. (2013) Optimisation of aqueous two-phase extraction of anthocyanins from purple sweet potatoes by response surface methodology. Food Chem., 141:3034-3041.

[51] Feng S, Luo Z, Tao B, Chen C. (2015) Ultrasonic-assisted extraction and purification of phenolic compounds from sugarcane (Saccharum officinarum L.) rinds, LWT. Food Sci. Technol., 60:970-976.

[52] Naczk M, Shahidi F. (2004) Extraction and analysis of phenolics in food. J. Chromatogr. A., 1054:95-111.

[53] Elksibi I, Haddar W, Ben Ticha M, Gharbi R, Mhenni MF. (2014) Development and optimisation of a non conventional extraction process of natural dye from olive solid waste using response surface methodology (RSM). Food Chem., 161:345-352.

[54] Ho CHL, Cacace JE, Mazza G. (2008) Mass transfer during pressurized low polarity water extraction of lignans from flaxseed meal. J. Food Eng., 89:64-71.

[55] H.M. Santos, C. Lodeiro, J.-L. Capelo-Martínez (2009), The Power of Ultrasound, Ultrasound in Chemistry: Analytical Applications. pp. 1–16.

[56] Mason TJ. (1992) Practical sonochemistry: Users guide to applications in chemistry and chemical engineering. Ellis Horwood Ltd, New York.

[57] Mason TJ. (2000) Sonochemistry. Oxford Chemistry Primers, Oxford, UK.

[58] Salisova M, Toma S, Mason TJ. (1997) Comparison of conventional and ultrasonically assisted extractions of pharmaceutically active compounds from Salvia officinalis. Ultrasonics sonochemistry, 4:131-134.

[59] Zhang Q, Zhang Z, Yue X, Fan X, Li T, Chen S. (2009) Response surface optimization of ultrasound-assisted oil extraction from autoclaved almond powder. Food Chemistry, 116: 513-518.

[60] Herodez SS, Hadolin M, Skerget M, Knez Z. (2003) Solvent extraction study of antioxidants from balm (Melissa officinalis L.) leaves. Food Chemistry, 80:275-282.

Downloads

Published

2016-04-30

How to Cite

Said, K. A. M., Radzi, Z., Yakub, I., & Mohamed Amin, M. A. (2016). EXTRACTION AND QUANTITATIVE DETERMINATION OF ASCORBIC ACID FROM BANANA PEEL MUSA ACUMINATA ‘KEPOK’. IIUM Engineering Journal, 17(1), 103–114. https://doi.org/10.31436/iiumej.v17i1.576

Issue

Section

Articles