A Novel Induced Current Protection Scheme for Large-Scale Solar Photovoltaic Systems Using Early Streamer Emissions
DOI:
https://doi.org/10.31436/iiumej.v26i1.3238Keywords:
Early Streamer Emission, Lightning protection, Induced current, Solar Photovoltaic, Lightning effectAbstract
The reliability and safety of large-scale solar photovoltaic systems (LSSPV) is paramount in harnessing renewable energy sources effectively. Given the increasing adoption of solar energy in Malaysian regions prone to lightning strikes, understanding and enhancing protection mechanisms is imperative. This study investigated an induced current protection system for LSSPV using an early streamer emission (ESE) air terminal in Malaysia. Two systems (ESE and Franklin lightning rod types) were employed in a 50 MWp PV power plant spanning 260 acres and were installed on the lightning arrester to ensure adequate protection. The Franklin rod type comprised 763 pieces and was constructed following the Council of Engineer standards (Thailand) standard. Meanwhile, the ESE lightning rod contained 68 pieces and was built following the NFC17102 standard (France). A 150 kA direct lightning impact was then simulated on the PV power plant using MATLAB/Simulink. Consequently, the ESE lightning protection system (LPS) effectively protected and prevented the lightning strike. The Franklin rod type's shading effects and installation costs (USD 10,026,800 vs. USD 8,026,800) were also more significant than the ESE rod type. These outcomes demonstrated that the ESE LPS was suitable for the PV power plant implementation. The findings of this study could also assist in optimizing the lightning protection technology for large-scale PV power plants.
ABSTRAK: Kebolehpercayaan dan keselamatan sistem fotovoltan suria berskala besar (LSSPV) adalah penting dalam memanfaatkan sumber tenaga boleh diperbaharui dengan berkesan. Memandangkan penggunaan tenaga suria yang semakin meningkat di kawasan Malaysia yang terdedah kepada panahan kilat, pemahaman dan meningkatkan mekanisme perlindungan adalah penting. Kajian ini menyiasat sistem perlindungan arus teraruh untuk LSSPV menggunakan terminal udara pelepasan aliran awal (ESE) di Malaysia. Dua sistem (jenis rod kilat ESE dan rod Franklin) telah digunakan dalam loji kuasa PV 50 MWp seluas 260 ekar dan dipasang pada penangkap kilat untuk memastikan perlindungan yang mencukupi. Jenis rod Franklin terdiri daripada 763 keping dan dibina mengikut piawaian Majlis Jurutera (Thailand). Sementara itu, rod kilat ESE mengandungi 68 keping dan dibina mengikut piawaian NFC17102 (Perancis). Kesan kilat langsung 150 kA kemudiannya disimulasikan pada jana kuasa PV menggunakan MATLAB/Simulink. Akibatnya, sistem perlindungan kilat (LPS) ESE melindungi dan menghalang serangan kilat dengan berkesan. Kesan teduhan dan kos pemasangan (USD 10,026,800 lwn. USD 8,026,800) jenis rod Franklin juga lebih ketara daripada jenis rod ESE. Hasil ini menunjukkan bahawa LPS ESE sesuai untuk pelaksanaan jana kuasa PV. Penemuan kajian ini juga boleh membantu dalam mengoptimumkan teknologi perlindungan kilat untuk jana kuasa PV berskala besar.
Downloads
Metrics
References
Wong, J., Lim, Y.S., Tang, J.H., and Morris, E. (2014) Grid-connected photovoltaic system in Malaysia: A review on voltage issues. Renewable and Sustainable Energy Reviews, 29, 535–545. https://doi.org/10.1016/j.rser.2013.08.087. DOI: https://doi.org/10.1016/j.rser.2013.08.087
Zhang, P.,Jin,Q. (2022) Evolution, status, and trends of exergy research: a systematic analysis during 1997–2020. Environ Sci Pollut Res 29, 30(2), 73769-73794, https://doi.org/10.1007/s11356-022-22915-y. DOI: https://doi.org/10.1007/s11356-022-22915-y
Azhari, A.W., Sopian, K., Zaharim, A., and Al Ghoul, M. (2008) A new approach for predicting solar radiation in tropical environment using satellite images - Case study of Malaysia," WSEAS Transactions on Environment and. Development, 4(4), 373–378.
Soares, A.P. (2013) Investigation of Typical Problems of PV-Inverters. Journal of Chemical Information and Modelling, 53(9), 1689–1699. DOI: https://doi.org/10.1021/ci400128m
Shahsavari, A., Farajollahi, M., Stewart, E., Roberts, C., and Mohsenian-Rad, H. (2017, 17-19 September) A data-driven analysis of lightning-initiated contingencies at a distribution grid with a PV farm using Micro-PMU data. North American Power Symposium (NAPS). Morgantown, USA. https://doi.org/10.1109/NAPS.2017.8107307. DOI: https://doi.org/10.1109/NAPS.2017.8107307
Coetzer, K.M., Gideon Wiid, P., and Rix, A.J. (2019, November) Investigating lightning induced currents in photovoltaic modules. International Symposium on Electromagnetic Compatibility - EMC Europe, pp 261–266, https://doi.org/10.1109/EMCEurope.2019.8871890. DOI: https://doi.org/10.1109/EMCEurope.2019.8871890
Ren, H., and Zhang, Y. (2021) Research on induced current and induced voltage of 500 kV double circuit transmission line. Energy Reports, 7(1), 216–223. https://doi.org/10.1016/j.egyr.2021.01.077. DOI: https://doi.org/10.1016/j.egyr.2021.01.077
Hernández, J.C., Vidal, P.G., and Jurado, F. (2008) Lightning and surge protection in photovoltaic installations. IEEE Transactions on Power Delivery, 23(4), 1961–1971. https://doi.org/10.1109/TPWRD.2008.917886. DOI: https://doi.org/10.1109/TPWRD.2008.917886
Muller, B., Hardt, L., Armbruster, A., Kiefer, K., and Reise, C. (2015) Yield predictions for photovoltaic power plants: Empirical validation, recent advances and remaining uncertainties. Progress in Photovoltaics, 24(4), 570–583, https://doi.org/10.1002/pip.2616. DOI: https://doi.org/10.1002/pip.2616
Belik, M. (2014, 12-14 May) PV panels under lightning conditions. Proceedings of the 2014 15th International Scientific Conference on Electric Power Engineering (EPE), pp. 367–370. https://doi.org/10.1109/EPE.2014.6839446. DOI: https://doi.org/10.1109/EPE.2014.6839446
Phanthuna, N., Thongchompoo, N., Plangklang, B., and Bhumkittipich, K. (2010, November) Model and experiment for photovoltaic lightning effects. International Conference on Power System Technology (POWERCON), 2. https://doi.org/10.1109/POWERCON.2010.5666054 DOI: https://doi.org/10.1109/POWERCON.2010.5666054
Ittarat, S., Hiranvarodom, S., and Plangklang, B. (2013) A computer program for evaluating the risk of lightning impact and for designing the installation of lightning rod protection for photovoltaic system. Energy Procedia, 34, 318–325. https://doi.org/10.1016/j.egypro.2013.06.760. DOI: https://doi.org/10.1016/j.egypro.2013.06.760
Sueta, H.E., Mocelin, A., Zilles, R., Obase, P.F., and Boemeisel, E. (2013, 7-11 October) Protection of photovoltaic systems against lightning experimental verifications and techno-economic analysis of protection. 2013 International Symposium on Lightning Protection (XII SIPDA), pp. 354–359, https://doi.org/10.1109/SIPDA.2013.6729233. DOI: https://doi.org/10.1109/SIPDA.2013.6729233
Sobolewski, K., and Sobieska, E. (2022) Analysis of the effectiveness of lightning and surge protection in a large solar farm. 71(2), 523–542. https://doi.org/10.24425/aee.2022.140726. DOI: https://doi.org/10.24425/aee.2022.140726
Radulovi?, V., Miljani?, Z. (2020). Determination of Effective Protection Distance in Front of Surge Protective Devices in Low Voltage Systems. In: Avdakovi?, S., Muj?i?, A., Mujezinovi?, A., Uzunovi?, T., Voli?, I. (eds) Advanced Technologies, Systems, and Applications IV -Proceedings of the International Symposium on Innovative and Interdisciplinary Applications of Advanced Technologies (IAT 2019). IAT 2019. Lecture Notes in Networks and Systems, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-030-24986-1_6. DOI: https://doi.org/10.1007/978-3-030-24986-1_6
J. He, Z. Yuan, S. Wang, J. Hu, S. Chen, and R. Zeng, (2009) Effective protection distances of low-voltage SPD with different voltage protection levels," IEEE Transactions on Power Delivery, 25(1), 187–195. https://doi.org/10.1109/TPWRD.2009.2035297. DOI: https://doi.org/10.1109/TPWRD.2009.2035297
Pons, E., and Tommasini, R. (2013, 6-8 June) Lightning protection of PV systems. 4th International Youth Conference on Energetics (IYCE), Hungary, pp. 1–5, https://doi.org/10.1109/IYCE.2013.6604209. DOI: https://doi.org/10.1109/IYCE.2013.6604209
Formisano, A., Petrarca, C., Hernández, J.C., and Munõz-Rodríguez, F.J. (2019) Assessment of induced voltages in common and differential-mode for a PV module due to nearby lightning strikes. IET Renewable Power Generation, 13(8), 1369–1378. https://doi.org/10.1049/iet-rpg.2018.6033. DOI: https://doi.org/10.1049/iet-rpg.2018.6033
Ahmad, N.I., Ali, Z., Kadir, M.Z.A.A., Osman, M., Zaini, N.H., and Roslan, M.H. (2021) Analysis of lightning-induced voltages effect with SPD placement for sustainable operation in hybrid solar PV-battery energy storage system. Sustainability, 13(12). https://doi.org/10.3390/su13126889. DOI: https://doi.org/10.3390/su13126889
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 IIUM Press

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.