Geometric Quality Analysis of Terrestrial Laser Scanning Data for Industrial Usage

Authors

DOI:

https://doi.org/10.31436/iiumej.v25i2.3211

Keywords:

Terrestrial Laser Scanning, Industrial, Quality Analysis, Scanning Geometry, Range, Incidence Angle

Abstract

Terrestrial laser scanning is a potential emerging technology increasingly used in several applications, including reverse engineering, digital reconstruction, deformation monitoring, forensic crime scene preservation, and construction (AEC) applications. The data tolerance accepted in these applications ranges from tens of millimeters (e.g., historical monument digitization) to tens of micrometers (e.g., industrial high-precision manufacturing and assembling). Instrument mechanism, atmospheric conditions, object surface characteristics, and scan geometry are the four main factors that affect the laser point clouds produced by the Time of Flight (TOF) 3D laser scanner. Consequently, research groups worldwide have put a significant effort into modeling the sources of TOF-TLS errors and design-specific performance evaluation methodologies. This paper investigated the influence of scanning geometry parameterized by incidence angle and the range on the quality of TOF-TLS data in industrial sites. The quality of an indoor sample dataset of an industrial case study was studied and assessed. The results showed that the incidence angle and range parameters substantially impacted the quality of the TOF-TLS data. The suggested methodology can accurately correct the laser data to eliminate the incidence angle and range effects. A revised and optimized point cloud dataset was reconstructed by utilizing these features in conjunction with the approximated quality of the individual points. Furthermore, when assessing the quality of individual point clouds, the accuracy validation obtained through the RMSE value was 3 mm based on ground-truth reference points. On the other hand, the standard deviation values computed through the Multi-Scale Model-to-model cloud (M3C2) analysis were revealed to reach 1mm, which shows better performance results than the Cloud-to-Cloud (C2C) and Cloud-to-Model (C2M) comparison analysis. However, the proposed method may result in the elimination of several significant laser points. These points of high incidence angle values are not eliminated in every instance. The effect of scanning geometry, represented by the angle of incidence with the normalized intensity of the scanning points, should be studied intensively in future studies.

ABSTRAK: Terestrial pengimbas laser adalah teknologi yang berpotensi besar dalam pelbagai aplikasi, termasuk kejuruteraan balikan, rekonstruksi digital, pengawasan perubahan bentuk, pemeliharaan tempat kejadian jenayah forensik, dan aplikasi konstruksi (AEC). Penerimaan data toleransi dalam aplikasi ini adalah dalam julat lingkungan beberapa milimeter (cth: digitalisasi monumen sejarah) sehingga beberapa mikrometer (cth: industri pembuatan berkejituan tinggi dan pemasangan). Mekanisme alatan, keadaan atmosfera, ciri-ciri permukaan objek, dan geometri pengimbas adalah empat faktor utama yang memberi kesan terhadap gumpalan asap titik laser terhasil daripada masa terbang (TOF) 3D pengimbas laser. Oleh itu, kumpulan pengkaji sedunia telah berusaha bersungguh-sungguh dalam pemodelan sumber ralat TOF-TLS dan mereka kaedah penilaian prestasi reka bentuk tertentu. Kajian ini dipengaruhi oleh geometri pengimbas berparameter sudut tuju dan julat kualiti data TOF-TLS dalam kawasan industri. Kualiti sampel set data dalam bangunan menggunakan kajian pembelajaran industri telah diteliti dan dinilai. Dapatan kajian menunjukkan sudut tuju dan julat parameter sangat mempengaruhi kualiti data TOF-TLS. Kaedah yang dicadangkan ini dapat memperbetulkan arah secara tepat iaitu kesan pengurangan sudut tuju dan julat. Set data rawak titik yang diubah dan dioptimumkan telah dibina semula dengan menggunakan ciri-ciri ini bersempena kualiti anggaran titik-titik individu. Tambahan, apabila menaksir kualiti titik rawak individu, pengesahan ketepatan yang diperoleh melalui nilai RMSE dijumpai sebanyak 3 mm berdasarkan titik-titik panduan kesahihan bumi. Di samping itu, nilai sisihan piawai yang dikira melalui analisis Model-ke-model Skala-Pelbagai Rawak (M3C2) didapati mencapai 1 mm, di mana menunjukkan dapatan prestasi lebih baik berbanding analisis Rawak-ke-rawak (C2C) dan Rawak-ke-Model (C2M) secara bandingan. Walau bagaimanapun, kaedah yang dicadangkan ini mungkin menyebabkan penyisihan beberapa titik laser penting. Titik-titik ini yang mempunyai nilai sudut tuju yang tinggi adalah tidak disisihkan pada setiap masa. Kesan pengimbas geometri, merupakan sudut tuju dengan keamatan ternormal titik-titik pengimbas, perlu dikaji dengan lebih lanjut pada masa depan.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Tang P, Huber D, Akinci B, Lipman R, Lytle A. (2010). Automatic reconstruction of as-built building information models from laser-scanned point clouds: A review of related techniques. Automation in construction, 19(7): 829-843.? DOI: https://doi.org/10.1016/j.autcon.2010.06.007

Teza G, Pesci A. (2013). Geometric characterization of a cylinder-shaped structure from laser scanner data: Development of an analysis tool and its use on a leaning bell tower. Journal of Cultural Heritage, 14(5): 411-423.? DOI: https://doi.org/10.1016/j.culher.2012.10.015

Roca-Pardiñas J, Argüelles-Fraga R, de Asís López F, Ordóñez C. (2014). Analysis of the influence of range and angle of incidence of terrestrial laser scanning measurements on tunnel inspection. Tunnelling and underground space technology, 43: 133-139.? DOI: https://doi.org/10.1016/j.tust.2014.04.011

Vosselman, G., and Maas, H. G. (2010). Airborne and Terrestrial Laser Scanning. CRC press.

Soudarissanane S, Lindenbergh R, Menenti M, Teunissen P. (2011). Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points. ISPRS journal of photogrammetry and remote sensing, 66(4): 389-399.? DOI: https://doi.org/10.1016/j.isprsjprs.2011.01.005

Muralikrishnan B. (2021). Performance evaluation of terrestrial laser scanners—A review. Measurement Science and Technology, 32(7): 072001.? DOI: https://doi.org/10.1088/1361-6501/abdae3

Thamir ZS, Abed FM. (2020). How geometric reverse engineering techniques can conserve our heritage; a case study in Iraq using 3D laser scanning. In IOP Conference Series: Materials Science and Engineering, 737(1): 012231. DOI: https://doi.org/10.1088/1757-899X/737/1/012231

Jurek T, Kuhlmann H, Holst C. (2017). Impact of spatial correlations on the surface estimation based on terrestrial laser scanning. Journal of Applied Geodesy, 11(3): 143-155.? DOI: https://doi.org/10.1515/jag-2017-0006

Schaer P, Skaloud J, Landtwing S, Legat K. (2007). Accuracy estimation for laser point cloud including scanning geometry. In Mobile Mapping Symposium 2007, Padova.?

Abed FM, Mills JP, Miller PE. (2012). Echo amplitude normalization of full-waveform airborne laser scanning data based on robust incidence angle estimation. IEEE Transactions on Geoscience and Remote Sensing, 50(7): 2910-2918.? DOI: https://doi.org/10.1109/TGRS.2011.2175232

Kaasalainen S, Ahokas E, Hyyppa J, Suomalainen J. (2005). Study of surface brightness from backscattered laser intensity: Calibration of laser data. IEEE Geoscience and Remote Sensing Letters, 2(3): 255-259.? DOI: https://doi.org/10.1109/LGRS.2005.850534

Kaasalainen S, Jaakkola A, Kaasalainen M, Krooks A, Kukko A. (2011). Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: Search for correction methods. Remote Sensing, 3(10): 2207-2221.? DOI: https://doi.org/10.3390/rs3102207

Tan K, Cheng X. (2016). Correction of incidence angle and distance effects on TLS intensity data based on reference targets. Remote Sensing, 8(3): 251.? DOI: https://doi.org/10.3390/rs8030251

Pesci A, Teza G. (2008). Effects of surface irregularities on intensity data from laser scanning: an experimental approach. Annals of Geophysics.?

Soudarissanane S, Lindenbergh R, Menenti M, Teunissen, P., & Delft, T. (2009). Incidence angle influence on the quality of terrestrial laser scanning points, ISPRS. In Proceedings ISPRS Workshop Laser scanning (pp. 1-2).?

Záme?níková M, Neuner H, Pegritz S, Sonnleitner R. (2015). Investigation on the influence of the incidence angle on the reflectorless distance measurement of a terrestrial laser scanner. Iulia Dana Negula, Violeta Poenaru, 37.?

Khalaf AZ, Al-Saedi ASJ. (2016). Assessment of Structure with Analytical Digital Close Range Photogrammetry. Engineering and Technology Journal, 34(11): 2140-2151.? DOI: https://doi.org/10.30684/etj.34.11A.18

Milenkovi? M, Pfeifer N, Glira P. (2015). Applying terrestrial laser scanning for soil surface roughness assessment. Remote sensing, 7(2): 2007-2045.? DOI: https://doi.org/10.3390/rs70202007

Lague D, Brodu N, Leroux J. (2013). Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (NZ). ISPRS journal of photogrammetry and remote sensing, 82: 10-26.? DOI: https://doi.org/10.1016/j.isprsjprs.2013.04.009

Hussein LY, Alwan IA, Ataiwe TN. (2023). Smart city 3D modeling with a total station and a smartphone. In IOP Conference Series: Earth and Environmental Science (Vol. 1129, No. 1, p. 012002). DOI: https://doi.org/10.1088/1755-1315/1129/1/012002

Sun W, Wang J, Yang Y, Jin F, Sun F. (2023). Accurate deformation analysis based on point position uncertainty estimation and adaptive projection point cloud comparison. Geocarto International, 2175916.? DOI: https://doi.org/10.1080/10106049.2023.2175916

Höfle B, Pfeifer N. (2007). Correction of laser scanning intensity data: Data and model-driven approaches. ISPRS journal of photogrammetry and remote sensing, 62(6): 415-433.? DOI: https://doi.org/10.1016/j.isprsjprs.2007.05.008

Luhmann T, Robson S, Kyle S, Harley I. (2011). Close range photogrammetry: Principles, techniques and applications.?

Khalaf AZ, Ataiwe T, Mohammed I, Kareem A. (2018). 3D Digital modeling for archeology using close range photogrammetry. In MATEC Web of Conferences (Vol. 162, p. 03027). EDP Sciences.? DOI: https://doi.org/10.1051/matecconf/201816203027

Hadi AH, Khalaf AZ. (2022). Accuracy Assessment of Establishing 3D Real Scale Model in Close-Range Photogrammetry with Digital Camera. Engineering and Technology Journal, 40(11): 1492-1509.? DOI: https://doi.org/10.30684/etj.2022.132233.1097

Hussein LY, Alwan IA, Ataiwe TN. (2023). Evaluation of the accuracy of direct georeferencing of smartphones for use in some urban planning applications within smart cities. In AIP Conference Proceedings, 2793 (1). DOI: https://doi.org/10.1063/5.0163384

Khalaf AZ, Alwan IA, Jameel A. (2013). Establishment oF 3D Model with Digital Non-Metric Camera in Close Range Photogrammetry. Engineering and Technology Journal, 40(11): 1492-1509

Wunderlich TH, Wasmeier P, Ohlmann-Lauber J, Schäfer TH, Reidl F. (2013). Objective specifications of terrestrial laserscanners–A contribution of the geodetic laboratory at the Technische Universität München. Lehrstuhl für Geodäsie.?

CloudCompare forum [ https://www.cloudcompare.org/forum/ ]

Girardeau-Montaut D, Roux M, Marc R, Thibault G. (2005). Change detection on points cloud data acquired with a ground laser scanner. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 31 (8): 1601-1611.?

Monserrat O, Crosetto M. (2008). Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching. ISPRS Journal of Photogrammetry and Remote Sensing, 63(1): 142-154.? DOI: https://doi.org/10.1016/j.isprsjprs.2007.07.008

Olsen MJ, Kuester F, Chang BJ, Hutchinson TC. (2010). Terrestrial laser scanning-based structural damage assessment. Journal of Computing in Civil Engineering, 24(3): 264-272.? DOI: https://doi.org/10.1061/(ASCE)CP.1943-5487.0000028

JRC 3D Reconstructor stonex [ https://www.stonex.it/project/x300-laser-scanner/ ]

Abed FM, Mills JP, Miler PE. (2014). Calibrated full-waveform airborne laser scanning for 3D object segmentation. Remote Sensing, 6(5): 4109-4132.? DOI: https://doi.org/10.3390/rs6054109

Lichti DD. (2008). A method to test differences between additional parameter sets with a case study in terrestrial laser scanner self-calibration stability analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 63(2): 169-180.? DOI: https://doi.org/10.1016/j.isprsjprs.2007.08.001

Teng J, Shi Y, Wang H, Wu J. (2022). Review on the Research and Applications of TLS in Ground Surface and Constructions Deformation Monitoring. Sensors, 22(23): 4109-4132.? DOI: https://doi.org/10.3390/s22239179

Downloads

Published

2024-07-14

How to Cite

Al-Saedi, A. S. J., Abed, F. M., & Alwan, I. A. (2024). Geometric Quality Analysis of Terrestrial Laser Scanning Data for Industrial Usage. IIUM Engineering Journal, 25(2), 148–166. https://doi.org/10.31436/iiumej.v25i2.3211

Issue

Section

Civil and Environmental Engineering