Building a GIS Map for Forecasting the MIR Index in An Giang
DOI:
https://doi.org/10.31436/iiumej.v25i2.3129Keywords:
An Giang Province, GIS map, MIR index, Machine learning methodsAbstract
The MIR aquatic plant signal is capable of predicting specific pollution sources of water, contributing significantly to the effective management of surface water resources in An Giang province. The use of aquatic plants in water pollution treatment brings about positive effects through natural self-purification processes as they consume organic and nutrient substances such as N and P. Therefore, it is crucial to develop a tool for monitoring and supervising aquatic plant species. This paper investigates the application of GIS technology to build a GIS map representing the current status of vegetation cover in An Giang province. The background layers of the GIS database, along with detailed attribute layers regarding species composition, dominant species, and vegetation area, will serve as the basis for managing, utilizing, conserving, and restoring vegetation cover in the research area. Additionally, a predictive model for MIR indices has been constructed using machine learning methods. The results indicate that the model has a coefficient of determination (R2) of 91.7% for the dependent variable MIR compared to the independent variables. Subsequently, these results are visually displayed on a GIS map at 18 monitoring points within An Giang province, enabling users to easily observe, compare, evaluate, and propose suitable solutions for surface water quality management.
ABSTRAK: Isyarat tumbuhan akuatik MIR mampu meramalkan sumber pencemaran air secara spesifik, iaitu penyumbang penting kepada pengurusan berkesan permukaan sumber air di wilayah An Giang. Penggunaan tumbuhan akuatik dalam rawatan pencemaran membawa kepada kesan positif melalui proses rawatan kendiri secara semula jadi kerana ia mengandungi bahan organik dan nutrien seperti N dan P. Oleh itu, sangat penting bagi membangunkan alat pemantauan dan pengawasan spesies tumbuhan akuatik. Kajian ini mengkaji aplikasi teknologi GIS bagi membangunkan peta GIS mewakili status terkini keseluruhan tumbuhan di wilayah An Giang. Lapisan latar belakang pangkalan data GIS bersama lapisan sifat-sifat terperinci berkenaan spesies komposit, spesies dominan, dan kawasan tumbuh-tumbuhan, dapat menyediakan asas kepada pengurusan, penggunaan, pemuliharaan, dan pemulihan tumbuh-tumbuhan meliputi kawasan kajian. Tambahan, model ramalan MIR dibangunkan menggunakan kaedah pembelajaran mesin. Dapatan kajian menunjukkan model ini mempunyai pekali penentu (R2) sebanyak 91.7% bagi pembolehubah MIR bersandar berbanding pembolehubah tak bersandar. Menyebabkan dapatan ini secara visual dapat dilihat pada peta GIS menggunakan 18 titik pantauan dalam wilayah An Giang province, membolehkan pengguna mudah melihat, membandingkan, menilai, dan mencadangkan solusi sesuai bagi pengurusan kualiti permukaan air.
Downloads
Metrics
References
An Giang Center for Environmental Monitoring and Techniques Resources. (2019) Report on results of environmental monitoring in An Giang province November, 2019, People’s Committee of An Giang province
Nguyen, K.; Yoshiaki, K.; Xiao, L.; Endo, R.; Shibuya, T. (2015) Microalgae Culture with Digestate from Methane Fermentation, Eco-Engineering, Vol. 27, No. 1, 7–11. doi:10.11450/seitaikogaku.27.7
People’s Committee of An Giang province. (2019). An Giang Department of Natural Resources and Environment. (2020). Report on environmental status of An Giang province in the period 2016-2020.
Nguyen, V. P.; Nguyen, K. T. T.; Ton, L. T.; Nguyen, D. T.; Nguyen, K. Q.; Vu, M. T.; Tran, H. N. (2020) Dual-Electronic Nanomaterial (Synthetic Clay) for Effective Removal of Toxic Cationic and Oxyanionic Metal Ions from Water, Journal of Nanomaterials, Vol. 2020, 1783749. doi:10.1155/2020/1783749 DOI: https://doi.org/10.1155/2020/1783749
An Giang province monitoring center. (2019) Report on environmental monitoring results of An Giang province
Demars, B. O. L.; Edwards, A. C. (2009) Distribution of aquatic macrophytes in contrasting river systems: A critique of compositional-based assessment of water quality, Science of The Total Environment, Vol. 407, No. 2, 975–990. doi:https://doi.org/10.1016/j.scitotenv.2008.09.012 DOI: https://doi.org/10.1016/j.scitotenv.2008.09.012
Szoszkiewicz, K.; Jusik, S.; Pietruczuk, K.; Gebler, D. (2020) The macrophyte index for rivers (MIR) as an advantageous approach to running water assessment in local geographical conditions, Water (Switzerland), Vol. 12, No. 1. doi:10.3390/w12010108 DOI: https://doi.org/10.3390/w12010108
Le Hoang Tu, Phan Thi Ha, Vo Ngoc Quynh Tram, Nguyen Ngoc Thuy, Dang Nguyen Dong Phuong, Tran Thong Nhat, N. K. L. (2023) GIS Application in Environmental Management: A Review, VNU Journal of Science: Earth and Environmental Sciences, Vol. 39, No. 2 DOI: https://doi.org/10.25073/2588-1094/vnuees.4957
Tran Triet, N. P. B. (2002) Correlation between hydrophytes and water environment at Tram Chim National Park, Dong Thap
D?ng, P.; Tin, H.; Pháp, T. (2013) Species composition and distribution of mangrove plants in lap an swamp, phu loc district, Thua Thien Hue province, Hue University Journal of Science: Agriculture and Rural Development, Vol. 75. doi:10.26459/jard.v75i6.3157 DOI: https://doi.org/10.26459/jard.v75i6.3157
Najah Ahmed, A.; Binti Othman, F.; Abdulmohsin Afan, H.; Khaleel Ibrahim, R.; Ming Fai, C.; Shabbir Hossain, M.; Ehteram, M.; Elshafie, A. (2019) Machine learning methods for better water quality prediction, Journal of Hydrology, Vol. 578, 124084. doi:https://doi.org/10.1016/j.jhydrol.2019.124084 DOI: https://doi.org/10.1016/j.jhydrol.2019.124084
Shams, M. Y.; Elshewey, A. M.; El-kenawy, E.-S. M.; Ibrahim, A.; Talaat, F. M.; Tarek, Z. (2023). Water quality prediction using machine learning models based on grid search method, Multimedia Tools and Applications. doi:10.1007/s11042-023-16737-4 DOI: https://doi.org/10.1007/s11042-023-16737-4
Azrour, M.; Mabrouki, J.; Fattah, G.; Guezzaz, A.; Aziz, F. (2022) Machine learning algorithms for efficient water quality prediction, Modeling Earth Systems and Environment, Vol. 8, 1–9. doi:10.1007/s40808-021-01266-6 DOI: https://doi.org/10.1007/s40808-021-01266-6
McCulloch, W. S.; Pitts, W. (1943) A logical calculus of the ideas immanent in nervous activity, The Bulletin of Mathematical Biophysics, Vol. 5, No. 4, 115–133. doi:https://doi.org/10.1007/BF02478259 DOI: https://doi.org/10.1007/BF02478259
Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression, The American Statistician, Vol. 46, No. 3, 175–185 DOI: https://doi.org/10.1080/00031305.1992.10475879
Cortes, C.; Vapnik, V. (1995) Support-vector networks, Machine Learning, Vol. 20, No. 3, 273–297 DOI: https://doi.org/10.1007/BF00994018
Ruder, S. (2016) An overview of gradient descent optimization algorithms, ArXiv Preprint ArXiv:1609.04747
Ho, T. K. (1995) Random decision forests, Proceedings of 3rd International Conference on Document Analysis and Recognition (Vol. 1), 278–282
Friedman, J. H. (2001) Greedy function approximation: a gradient boosting machine, Annals of Statistics, 1189–1232 DOI: https://doi.org/10.1214/aos/1013203451
Lipps, W. C., Baxter, T. E., & Braun-Howland, E. (n.d.). Standard methods for the examination of water and wastewater, Standard Methods For the Examination of Water and Wastewater. doi:10.2105/SMWW.2882.030
Nguyen, L.; Linh, N.; Th?nh, ?.; Hang, P.; Nguyen Vo Chau, N.; Thu, V. (2015) Evaluation of treatment efficiency of domestic wastewater by aquatic plants, Can Tho University Journal of Science
Khôi, C. M.; D?ng, N. V. C.; Nhiên, C. T. (2012) Ability to treat dissolved nitrogen and organic phosphorus pollution in pangasius pond wastewater by Luc Binh (Eichhorinna crassipes) and Vertiver grass (Vertiver zizanioides), Can Tho University Journal of Science, 151–160
Ceschin, S.; Ferrante, G.; Mariani, F.; Traversetti, L.; Ellwood, N. T. W. (2020) Habitat change and alteration of plant and invertebrate communities in waterbodies dominated by the invasive alien macrophyte Lemna minuta Kunth, Biological Invasions, Vol. 22, No. 4, 1325–1337. doi:10.1007/s10530-019-02185-5 DOI: https://doi.org/10.1007/s10530-019-02185-5
Nekos, Alla and Bo?arynMari?a and Lugowska, Maria and Tsos, Oksana and Netrobchuk, I. (2021) Assessment of the ecological condition of the Western Bug river basin according to the macrophyte index for rivers (MIR), Visnyk of V.N. Karazin Kharkiv National University, Series Geology. Geography. Ecology
Ismail, M. H. (2010) Determining and Mapping of Vegetation using GIS and Phytosociological Approach in Mount Tahan, Malaysia, Journal of Agricultural Science, Vol. 2, No. 2. doi:10.5539/jas.v2n2p80 DOI: https://doi.org/10.5539/jas.v2n2p80
Nguyen Quang Tuan; Tr?n V?n No; Do Thi Viet Huong. (2010) Applying GIS and remote sensing in creating a map of the current state of vegetation in 2008 at a scale of 1:50,000 in Ky Anh district, Ha Tinh province, Hue University Journal of Science
Bareth, G.; Waldhoff, G. (2017) GIS for Mapping Vegetation, Reference Module in Earth Systems and Environmental Sciences. doi:10.1016/B978-0-12-409548-9.09636-6 DOI: https://doi.org/10.1016/B978-0-12-409548-9.09636-6
?? Huy Bích; ??ng Quang Chung; Bùi Xuân Ch??ng; Nguy?n Th??ng Dong; ?? Trung ?àm; Ph?m Ng?c Hi?n; V? Ng?c L?; Ph?m Duy Mai; Ph?m Kim Mãn; ?oàn Th? Nhu; Nguy?n T?p; Tr?n Toàn. (2006) Medicinal Plants and Medicinal Animals in Vietnam (Volume 1), Nhà xu?t b?n Khoa h?c và K? thu?t, Hà N?i
?an, T. H.; Duy, N. P.; Th?, B. T. (2012) The distribution of aquatic plants in the organic polluted canals in Can Tho City in rainy season, T?p Chí Khoa H?c ??i H?c C?n Th?, No. 23a, 283–293
Bytyçi, P.; Shala-Abazi, A.; Zhushi-Etemi, F.; Bonifazi, G.; Hyseni-Spahiu, M.; Fetoshi, O.; Çadraku, H.; Feka, F.; Millaku, F. (2022) The Macrophyte Indices for Rivers to Assess the Ecological Conditions in the Klina River in the Republic of Kosovo, Plants. doi:10.3390/plants11111469 DOI: https://doi.org/10.3390/plants11111469
Tarkowska-Kukuryk, M.; Grzywna, A. (2022) Macrophyte communities as indicators of the ecological status of drainage canals and regulated rivers (Eastern Poland), Environmental Monitoring and Assessment, Vol. 194, No. 3, 210. doi:10.1007/s10661-022-09777-0 DOI: https://doi.org/10.1007/s10661-022-09777-0
Bytyçi, P.; Shala-Abazi, A.; Hyseni Spahiu, M.; Feka, F.; Fetoshi, O.; Bonifazi, G.; Millaku, F. (2021) The Macrophyte Index for Rivers (MIR) to Running Water Assessment in River Klina to the Republic of Kosovo
Demšar, J.; Curk, T.; Erjavec, A.; Gorup, ?.; Ho?evar, T.; Milutinovi?, M.; Možina, M.; Polajnar, M.; Toplak, M.; Stari?, A.; Štajdohar, M.; Umek, L.; Žagar, L.; Žbontar, J.; Žitnik, M.; Zupan, B. (2013) Orange: Data Mining Toolbox in Python, Journal of Machine Learning Research, Vol. 14, 2349–2353
Lundberg, S.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. (2020) From Local Explanations to Global Understanding with Explainable AI for Trees, Nature Machine Intelligence, Vol. 2. doi:10.1038/s42256-019-0138-9 DOI: https://doi.org/10.1038/s42256-019-0138-9
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.