Performance Analysis of an Induction Motor Coupled VIF with MR Fluid Damper

Authors

DOI:

https://doi.org/10.31436/iiumej.v25i2.3094

Keywords:

Variable Inertia Flywheel, Energy Saving, Magneto Rheological Fluid

Abstract

The flywheel is a classic mechanical device that is often used to enhance the rotational motion of engines. Electrical machines often face fluctuations in speed that hamper speed stability and cause extra power consumption. Recently, a few publications have analyzed the impact of the flywheel to reduce fluctuation and energy consumption in electric motors. This study proposes the use of a flywheel with a changeable moment of inertia, which can be manipulated to boost both speed stability and energy efficiency. The objective is to improve the speed stability of industrial motors in the presence of the loading effect. This study introduces a magneto-rheological variable inertia flywheel (MRVIF) to control rotational speed and reduce power usage. The purpose of analytical development is to assess the influence of rotational speed and excitation current on the MR damper's moment of inertia for control purposes. The investigation focuses on the analysis of power usage and stability across different power inputs and rotating speeds. The effectiveness of the suggested MRVIF was evaluated via the development of a prototype. Experiments were undertaken to validate the effectiveness and stability of the system. The findings illustrate the potential use of MRVIF in reducing energy consumption and enhancing speed stability.

ABSTRAK: ‘Flywheel’ atau roda tenaga adalah peranti mekanikal klasik yang sering digunakan bagi meningkatkan gerakan putaran enjin. Mesin elektrik sering menghadapi turun naik kelajuan yang menghalang kestabilan kelajuan dan menyebabkan penggunaan kuasa tambahan. Baru-baru ini, terdapat beberapa kajian terdahulu yang menganalisis kesan roda tenaga bagi mengurangkan turun naik dan penggunaan tenaga dalam motor elektrik. Kajian ini mencadangkan penggunaan roda tenaga dengan momen inersia boleh ubah, di mana ia boleh dimanipulasi bagi meningkatkan kestabilan kelajuan dan kecekapan tenaga. Objektif kajian adalah bagi meningkatkan kestabilan kelajuan motor industri bersama kesan muatan. Kajian ini memperkenalkan pembolehubah magnetorheologikal roda tenaga inersia (MRVIF) bagi mengawal kelajuan putaran dan mengurangkan penggunaan kuasa. Tujuan pembangunan analitikal ini adalah bagi menilai pengaruh kelajuan putaran dan arus pengujaan pada momen inersia peredam MR bagi tujuan kawalan. Kajian memfokuskan pada analisis penggunaan kuasa dan kestabilan merentas pelbagai input kuasa dan kelajuan putaran. Keberkesanan MRVIF yang dicadangkan telah diuji melalui pembangunan prototaip. Eksperimen dijalankan bagi mengesahkan keberkesanan dan kestabilan sistem. Penemuan ini menggambarkan potensi MRVIF dalam mengurangkan penggunaan tenaga dan meningkatkan kestabilan kelajuan.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

V. Kartašovas, V. Barzdaitis, and P. Mažeika, “Modeling and simulation of variable inertia rotor,” J. Vibroengineering, vol. 14, no. 4, pp. 1745–1750, 2012.

X. Dong, J. Xi, P. Chen, and W. Li, “Magneto-rheological variable inertia flywheel,” Smart Mater. Struct., vol. 27, no. 11, p. 115015, Nov. 2018, doi: 10.1088/1361-665X/aad42b. DOI: https://doi.org/10.1088/1361-665X/aad42b

C. Jauch, “Controls of a flywheel in a wind turbine rotor,” Wind Eng., vol. 40, no. 2, pp. 173–185, 2016, doi: 10.1177/0309524X16641577. DOI: https://doi.org/10.1177/0309524X16641577

M. Huang, “Optimization of powered wheels for commercial aircraft and design of test scheme,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 237, no. 7, pp. 1751–1764, Jun. 2023, doi: 10.1177/09544070221093182. DOI: https://doi.org/10.1177/09544070221093182

M. Malekan, A. Khosravi, and X. Zhao, “The influence of magnetic field on heat transfer of magnetic nanofluid in a double pipe heat exchanger proposed in a small-scale CAES system,” Appl. Therm. Eng., vol. 146, pp. 146–159, 2019, doi: 10.1016/j.applthermaleng.2018.09.117. DOI: https://doi.org/10.1016/j.applthermaleng.2018.09.117

L. Islam, M. M. Rashid, and M. A. Faysal, “Investigation of the Energy Saving Capability of a Variable Inertia Magneto-Rheological ( MR ) Flywheel,” vol. 2, no. 1, pp. 25–31, 2022. DOI: https://doi.org/10.69955/ajoeee.2022.v2i1.30

S. M. Salam and M. M. Rashid, “A new approach to analysis and simulation of flywheel energy storage system,” in 8th International Conference on Mechatronics Engineering (ICOM 2022), 2022, pp. 90–94, doi: 10.1049/icp.2022.2271. DOI: https://doi.org/10.1049/icp.2022.2271

W. Lu, Y. Luo, L. L. Kang, and D. Wei, “Characteristics of magnetorheological fluids under new formulation,” J. Test. Eval., vol. 47, no. 4, 2019, doi: 10.1520/JTE20170477. DOI: https://doi.org/10.1520/JTE20170477

T. Liu, J.; Miura, Y.; Ise, “Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators,” IEEE Trans. Power Electron., vol. 31, pp. 3600–3611, 2015. DOI: https://doi.org/10.1109/TPEL.2015.2465852

C. Li, M. Liang, and T. Wang, “Criterion fusion for spectral segmentation and its application to optimal demodulation of bearing vibration signals,” Mech. Syst. Signal Process., vol. 64–65, pp. 132–148, Dec. 2015, doi: 10.1016/j.ymssp.2015.04.004. DOI: https://doi.org/10.1016/j.ymssp.2015.04.004

D. Richiedei, A. Trevisani, and G. Zanardo, “A Constrained Convex Approach to Modal Design Optimization of Vibrating Systems,” J. Mech. Des., vol. 133, no. 6, Jun. 2011, doi: 10.1115/1.4004221. DOI: https://doi.org/10.1115/1.4004221

D. J. Inman, Engineering Vibration, Internatio. Prentice-Hall International, Inc, 1994.

T. E. Saaed, G. Nikolakopoulos, J. E. Jonasson, and H. Hedlund, “A state-of-the-art review of structural control systems,” JVC/Journal Vib. Control, vol. 21, no. 5, pp. 919–937, 2015, doi: 10.1177/1077546313478294. DOI: https://doi.org/10.1177/1077546313478294

M. Trikande, N. Karve, R. Anand Raj, V. Jagirdar, and R. Vasudevan, “Semi-active vibration control of an 8x8 armored wheeled platform,” J. Vib. Control, vol. 24, no. 2, pp. 283–302, Jan. 2018, doi: 10.1177/1077546316638199. DOI: https://doi.org/10.1177/1077546316638199

G. W. Housner et al., “Structural Control: Past, Present, and Future,” J. Eng. Mech., vol. 123, no. 9, pp. 897–971, 1997, doi: 10.1061/(asce)0733-9399(1997)123:9(897). DOI: https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)

S.-G. Luca, F. Chira, and V.-O. Rosca, “Passive Active and Semi-Active Control Systems in Civil Engineeering,” Constr. Arhit., vol. 3, p. 4, 2005.

N. Eslaminasab, “Development of a Semi-active Intelligent Suspension System for Heavy Vehicles,” p. 181, 2008.

Thoma JU., “Simulation by bondgraphs: Introduction to a graphical method,” Berlin Springer Sci. Bus. Media, 2012.

M. T. Fan Y, Mu A, “Study on the application of energy storage system in offshore wind turbine with hydraulic transmission,” Energ Convers Manag. 2016, pp. 338–346, 2016. DOI: https://doi.org/10.1016/j.enconman.2015.12.033

E. P. Kat C-J, “Validation metric based on relative error,” Math Comp Model Dyn, vol. 18(5), pp. 487–520, 2012. DOI: https://doi.org/10.1080/13873954.2012.663392

Downloads

Published

2024-07-14

How to Cite

Munimus Salam, S., & Mahbubur Rashid, M. (2024). Performance Analysis of an Induction Motor Coupled VIF with MR Fluid Damper. IIUM Engineering Journal, 25(2), 350–366. https://doi.org/10.31436/iiumej.v25i2.3094

Issue

Section

Mechatronics and Automation Engineering