Resistance of Rubberized Asphalt Mixture to Aging and Moisture Damage

Authors

DOI:

https://doi.org/10.31436/iiumej.v25i2.3040

Keywords:

Crumb rubber modified bitumen; aged asphalt; dense-graded asphalt mix; rubberized asphalt mixture; moisture damage

Abstract

Asphalt pavements in Malaysia suffer severe deterioration, such as raveling and stripping, because the bonding and adhesion between asphalt and aggregate is poor. Heavy rains throughout the year are the main cause of deterioration or a contributing cause to accelerated failure of the pavement structure. Therefore, it is very important to inspect the moisture damage and permeability behavior of asphalt pavement, which can effectively help in a pre-preservation program for asphalt pavement. This study aims to evaluate the effect of adding crumb rubber (CR) on the pavement permeability and moisture damage in highly unfriendly environmental conditions. Laboratory investigation was employed to achieve this aim. The laboratory investigation involved the preparation of two different ACW 14 rubberized asphalt mixtures (unaged and aged). Each type of rubberized mixture contained four CR contents (0%, 5%, 10%, and 15%). The mixtures were tested for air voids, Marshall stability and flow, moisture susceptibility, permeability, and water absorption. The laboratory investigation showed that the CR was appropriate for use up to 10% in asphalt mixtures. There were improvements in the performance of the asphalt mixtures including the Marshall stability, stiffness, durability and resistance against moisture damage. Furthermore, the use of CR prompted better permeability and water absorption. ACW 14 mixture is considered a practically impervious mixture. In conclusion, the application of rubberized pavement can enhance various phases of pavement life and structure by improving the structural performance and reducing environmental impact and landfill issues in the future.

ABSTRAK: Turapan asfalt di Malaysia mengalami kemerosotan yang teruk seperti permukaan turapan jalan yang terpecah (rancak) dan berlubang (pelucutan) kerana ikatan dan lekatan antara asfalt dan agregat adalah lemah. Hujan lebat sepanjang tahun adalah punca utama kemerosotan atau penyumbang kepada struktur turapan rosak dengan cepat. Oleh itu, adalah sangat penting bagi memeriksa kerosakan disebabkan lembapan dan sifat kebolehtelapan turapan asfalt ini dapat membantu dengan berkesan dalam program pra-pemeliharaan turapan asfalt. Kajian makmal telah digunakan bagi mencapai tujuan ini. Kajian melibatkan penyediaan dua campuran asfalt bergetah ACW 14 yang berbeza (tidak berumur dan berumur). Setiap jenis campuran getah mengandungi empat kandungan CR (0%, 5%, 10%, dan 15%). Campuran telah diuji samada mempunyai lompang udara, kestabilan dan aliran Marshall, kerentanan lembapan, kebolehtelapan, dan penyerapan air. Kajian makmal menunjukkan CR sesuai digunakan sehingga 10% dalam campuran asfalt. Terdapat peningkatan dalam prestasi campuran asfalt termasuk kestabilan Marshall, kekakuan, ketahanan dan rintangan terhadap kerosakan lembapan. Tambahan pula, penggunaan CR mendorong kebolehtelapan dan penyerapan air. Campuran ACW 14 dianggap sebagai campuran praktikal tidak telap air. Kesimpulan, aplikasi turapan bergetah dapat meningkatkan pelbagai fasa hayat dan struktur turapan dengan menambah baik prestasi struktur dan mengurangkan kesan alam sekitar dan isu tapak pelupusan pada masa hadapan.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Administration, FH. (2018) Sustainable Pavement Program. U.S. Department of Transportation, Washington, USA.

Hassani A, Taghipoor M, Karimi MM. (2020) A state of the art of semi-flexible pavements: Introduction, design, and performance. Construction and Building Materials, 253: p. 119196. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119196

AL-Qudah A, Abdul Rahim M, Ghazaly ZM, et al. (2018) Effect of aged crumb rubber bitumen on performance dense graded mix in Malaysia. International Journal of Civil Engineering and Technology, 9(4): p. 1356-1369.

Zhang H, Chen Z, Zhu C, Wei C. (2020) An innovative and smart road construction material: thermochromic asphalt binder, in New Materials in Civil Engineering, Editors. Butterworth-Heinemann. p. 691-716. DOI: https://doi.org/10.1016/B978-0-12-818961-0.00022-3

Qiao Y. (2015) Flexible pavements and climate change: impact of climate change on the performance, maintenance, and life-cycle costs of flexible pavements. University of Nottingham.

AL-Qudah AH. (2018) Mechanical Properties of Asphaltic Concrete Mixture with Crumb Rubber and Aged Binder. School of Environmental Engineering, Universiti Maaysia Perlis, Malaysia.

Omar HA, Yusoff NIM, Mubaraki M, Ceylan H. (2020) Effects of moisture damage on asphalt mixtures. Journal of Traffic and Transportation Engineering (English Edition), 7(5): p. 600-628. DOI: https://doi.org/10.1016/j.jtte.2020.07.001

New Strait Times Agency. (2021) Flood-damaged road repairs to cost RM900 million. Kuala Lumpur, Malaysia.

Wulandari PS, Tjandra D. (2017) Use of crumb rubber as an additive in asphalt concrete mixture. Procedia engineering, 171: p. 1384-1389. DOI: https://doi.org/10.1016/j.proeng.2017.01.451

Sarsam SI, Hasan EA. (2017) Evaluating Water Damage Resistance of Recycled Asphalt Concrete Mixtures. Journal of Engineering, 23(1): p. 156-168. DOI: https://doi.org/10.31026/j.eng.2017.01.10

Zhu J, Ma T, Dong Z. (2020) Evaluation of optimum mixing conditions for rubberized asphalt mixture containing reclaimed asphalt pavement. Construction and Building Materials, 234: p. 117426. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117426

Mashaan N. (2016) Use of waste tyre rubber in enhancing the mechanical properties of stone mastic asphalt mix. Civil Engineering Department, University of Malaya, Malaysia.

Nashruddin TF, Ramadhansyah PJ, Norhidayah AH, et al. (2014) Evaluation of Binder Absorption in Asphalt Mixture with Various Aging Conditions Using Rice Method. Jurnal Teknologi (Sciences & Engineering), 71(3): p. 53-56. DOI: https://doi.org/10.11113/jt.v71.3758

Bansal S, Misra AK, Bajpai P. (2017) Evaluation of modified bituminous concrete mix developed using rubber and plastic waste materials. International Journal of Sustainable Built Environment, 6(2): p. 442-448. DOI: https://doi.org/10.1016/j.ijsbe.2017.07.009

Wangn T, Xiao F, Zhu X, Huang B, Wang J, Amirkhanian S. (2018) Energy consumption and environmental impact of rubberized asphalt pavement. Journal of Cleaner Production, 180: p. 139-158. DOI: https://doi.org/10.1016/j.jclepro.2018.01.086

Pouranian MR, Haddock JE. (2020) Effect of aggregate gradation on asphalt mixture compaction parameters. Journal of Materials in Civil Engineering, 32(9): p. 04020244. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0003315

Garcia VM, Barros L, Garibay J, Abdallah I, Nazarian S. (2020) Effect of aggregate gradation on performance of asphalt concrete mixtures. Journal of Materials in Civil Engineering, 32(5): p. 04020102. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0003147

Bharath G, Reddy KS, Tandon V, Reddy MA. (2021) Aggregate gradation effect on the fatigue performance of recycled asphalt mixtures. Road Materials and Pavement Design, 22(1): p. 165-184. DOI: https://doi.org/10.1080/14680629.2019.1620116

Shivakumara SN, Mallesh SK, Anjum MI. (2015) Effect of particle shape on the workability and properties of conventional bituminous mixes. Int. J. Res. Eng. Technol, 4(4): p. 50-54. DOI: https://doi.org/10.15623/ijret.2015.0416010

Asghar MAA. (2015) Evaluation of strength characteristics of recycled bituminous pavement materials, in School of Civil Engineering & Surveying. University of Southern Queensland.

Din IM, Mir MS, Farooq MA. (2020) Effect of freeze-thaw cycles on the properties of asphalt pavements in cold regions: a review. Transportation Research Procedia, 48: p. 3634-3641. DOI: https://doi.org/10.1016/j.trpro.2020.08.087

Malaysian Standards. (2008) Standard Specification for Road Works, Section 4, Flexible Pavement. Jabatan Kerja Raya (JKR), Kuala Lumpur, Malaysia.

Annual Book of ASTM Standards. (2002) Standard Test Method for Preparation of Bituminous Mixtures Using Marshall Apparatus, in ASTM D1559, American Society for Testing and Materials (ASTM) International: West Conshohocken, PA, US.

Annual Book of ASTM Standards. (2005) Standard Test Method for Percent Air Voids in Compacted Dense and Open Bituminous Paving Mixtures, in ASTM D3203, American Society for Testing and Materials (ASTM) International: West Conshohocken, PA, US.

Annual Book of ASTM Standards. (2005) Standard Test Method for Marshall Stability and Flow of Bituminous Mixtures, in ASTM D6927 American Society for Testing and Materials (ASTM) International: West Conshohocken, PA, US.

Annual Book of AASHTO Standards. (2007) Standard Method of Test for Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage, in AASHTO T283, American Association of State and Highway Transportation Officials (AASHTO): Washington, US.

Florida Standards. (2004) Florida Method of Test for Measurement of Water Permeability of Compacted Asphalt Paving Mixtures, in FM5-565, Florida Department of Transportation: Gainesville, Florida, US.

Annual Book of AASHTO Standards. (2002) Standard Method of Test for Effect of Water on Cohesion of Compacted Bituminous Mixtures, in AASHTO T165, American Association of State and Highway Transportation Officials (AASHTO): Washington, US.

Babalghaith AM. (2021) Development of Stone Mastic Asphalt Pavement Design with Palm Oil Clinker as Fine Aggregate Replacement, in Civil Engineering. University of Malaya. Malaysia.

Annual Book of EN Standards. (2017) Standard Test Method for Particle loss of porous asphalt specimens, Bituminous mixtures, in European Standards (EN) 12697, British Standards (BS) Institution: London, UK.

Zaniewski JP, Yan Y. (2013) Hot Mix Asphalt Concrete Density, Bulk Specific Gravity, and Permeability.

Giompalo JA. (2010) Permeability of hot mix asphalt concrete as affected by binder content. West Virginia University.

Mkwata R, Chong EEM. (2022) Effect of pavement surface conditions on road traffic accident-A Review. in E3S Web of Conferences. EDP Sciences. DOI: https://doi.org/10.1051/e3sconf/202234701017

Fadhil TH, Mohammed HA, Ahmed TY. (2015) An empirical relationship between asphalt and water absorption of coarse aggregates in HMA. Journal of Engineering and Sustainable Development, 19(1): p. 132-146.

Izaks R, Haritonovs V, Klasa I, Zaumanis M. (2015) Hot Mix Asphalt with High RAP Content. Procedia Engineering, 114: p. 676-684. DOI: https://doi.org/10.1016/j.proeng.2015.08.009

Cao W. (2007) Study on properties of recycled tire rubber modified asphalt mixtures using dry process. Construction and building materials, 21(5): p. 1011-1015. DOI: https://doi.org/10.1016/j.conbuildmat.2006.02.004

Vardanega P, Waters T. (2011) Analysis of asphalt concrete permeability data using representative pore size. Journal of Materials in Civil Engineering, 23(2): p. 169-176. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000151

Downloads

Published

2024-07-14

How to Cite

Al-Qudah, A. H., Koting, S., Ibrahim, M. R., Alibrahim, M., & Jegatheesan, N. (2024). Resistance of Rubberized Asphalt Mixture to Aging and Moisture Damage. IIUM Engineering Journal, 25(2), 130–147. https://doi.org/10.31436/iiumej.v25i2.3040

Issue

Section

Civil and Environmental Engineering

Funding data

  • Universiti Malaya
    Grant numbers KW IPPP-Research Maintenance Fee (RMF) Individual (Grant Number: RMF0476-2021)