STRATEGIES TO REDUCE THE NUMBER OF SEVERELY INJURED VICTIMS IN ADOLESCENT MOTORCYCLE RIDERS
DOI:
https://doi.org/10.31436/iiumej.v25i1.2997Keywords:
Accident, Bayesian, Mildly, Motorcycle, SeverelyAbstract
Statistical data in 2021 in Indonesia shows that the number of accident victims reached 103,645 cases. Around 25% of these accident victims were underage drivers. For this reason, efforts must be made to minimize the number of accident victims, especially avoiding severe injuries. The criteria for respondents are motorcycle riders aged 12 - 25 years who are still categorized as adolescent riders. The data collection was carried out by interviewing respondents for approximately 10 minutes. For data analysis, the number of respondents used was 308 respondents. The location for data collection was Riau Province, Indonesia. The data was analyzed by Bayesian network. To get a good model, the basic model was validated. The number of respondents used to validate this model was 107 respondents. The results of the analysis show that the probability of an adolescent driver to experience severe injury is 27% and mild injury is 73%.Scenario 1 shows that poor driving performance will increase the probability of severe injury by 3%.Scenario 2 shows that driver fatigue will increase the probability of severe injury by 3%.Scenario 3 shows that drivers who conduct traffic violations will increase the probability of severe injury by 5%.Scenario 4 shows that drivers who perform long trips(more than 1 hour) increase their fatigue from 28% to 60%, which also increases the probability of severe injury by 1%.Scenario 5 shows that late night driving (between 24:00 – 06:00) not only increases the probability of fatigue but also increases the probability of severe injury by 1%.Strategic steps to reduce severe injury among adolescent motorcyclists include driving with good performance, avoiding fatigue-inducing conditions, abiding by all traffic rules, and avoiding driving between the hours of 24:00-06:00.
ABSTRAK: Data statistik pada tahun 2021 di Indonesia menunjukkan jumlah mangsa kemalangan mencapai 103,645 kes. Kira-kira 25% mangsa kemalangan ini adalah pemandu bawah umur. Oleh itu, usaha perlu dilaksanakan bagi meminimumkan mangsa kemalangan, terutama dalam mengelakkan kecederaan parah. Kriteria responden adalah penunggang motosikal berumur 12 - 25 tahun yang masih dikategori sebagai penunggang remaja. Pengumpulan data dijalankan dengan menemu bual responden selama lebih kurang 10 minit. Analisis data ini melibatkan 308 orang responden. Lokasi pengumpulan data adalah di Riau, Indonesia. Data dianalisis dengan rangkaian Bayesian. Bagi mendapatkan model terbaik, model asas telah disahkan. Bilangan responden yang terlibat dalam mengesahkan model ini adalah seramai 107 orang responden. Dapatan kajian menunjukkan kebarangkalian pemandu remaja yang mengalami kecederaan parah adalah 27% dan cedera ringan sebanyak 73%. Senario 1 menunjukkan pemanduan tidak berhemah akan meningkatkan kebarangkalian cedera parah sebanyak 3%. Senario 2 menunjukkan bahawa memandu dalam keadaan letih akan meningkatkan kebarangkalian cedera parah sebanyak 3%. Senario 3 menunjukkan bahawa pemandu yang melanggar peraturan lalu lintas akan meningkatkan kebarangkalian cedera parah sebanyak 5%. Senario 4 menunjukkan pemandu yang melakukan perjalanan melebihi 1 jam akan meningkatkan keletihan dari 28% kepada 60%, juga menyumbang kepada peningkatan kebarangkalian cedera parah sebanyak 1%. Senario 5 menunjukkan bahawa pemanduan lewat malam (antara 24.00 – 06.00) bukan sahaja meningkatkan kebarangkalian keletihan tetapi juga meningkatkan kebarangkalian cedera parah sebanyak 1%. Langkah strategik bagi mengurangkan kecederaan parah di kalangan penunggang motosikal remaja termasuk: memandu dengan berhemah, tidak memandu dalam keadaan letih, mematuhi segala undang-undang jalan raya dan mengelak dari memandu pada jam 24.00 hingga 06.00.
Downloads
Metrics
References
Bucsuházy K, Matuchová E, Z?vala R, Moravcová P, Kostíková M, Mikulec R. (2020) Human factors contributing to the road traffic accident occurrence. Transportation Research Procedia, 45: 555-561.https://doi.org/10.1016/j.trpro.2020.03.057 DOI: https://doi.org/10.1016/j.trpro.2020.03.057
Chouhan SS, Kathuria A, Sekhar CR. (2023) The motorcycle rider behaviour questionnaire as a predictor of crashes: A systematic review and meta-analysis. IATSS Research, 47: 61-72. DOI: https://doi.org/10.1016/j.iatssr.2023.01.004
Kerruish L, Cheng ASK, Ting K-H, Liu KPY. (2022) Exploring the sustained and divided attention of novice versus experienced drivers. Transportation Research Interdisciplinary Perspectives, 16: 100702. https://doi.org/10.1016/j.trip.2022.100702 DOI: https://doi.org/10.1016/j.trip.2022.100702
Rahman MA, Hossain MdM,Mitran E,Sun X. (2021)Understandingthecontributingfactorstoyoungdrivercrashes:Acomparisonofcrashpro?lesofthreeagegroups.TransportationEngineering, 5: 100076. https://doi.org/10.1016/j.treng.2021.100076 DOI: https://doi.org/10.1016/j.treng.2021.100076
Moller H, Ivers R, Cullen P, Rogers K, Boufous S, Patton G, Senserrick T. (2021) Risky youth to risky adults: Sustained increased risk of crash in the DRIVE study 13 years on. Preventive Medicine, 153: 106786.https://doi.org/10.1016/j.ypmed.2021.106786 DOI: https://doi.org/10.1016/j.ypmed.2021.106786
Tselentis DI, Folla K, Agathangelou V, Yannis G. (2019) Investigating the correlation between driver's characteristics and safety performance. World Conference on Transport Research – WCTR 2019, Mumbai, 26-30 May 2019. Transportation Research Procedia, 48: 1254-1262.https://doi.org/10.1016/j.trpro.2020.08.147 DOI: https://doi.org/10.1016/j.trpro.2020.08.147
Muley D, Dias C, Umlai A-H, AlArdah H, Shah M, Murtaza M, FirasAS.(2022) Assessment of turn signal use at two-lane roundabouts in Doha city. Procedia Computer Science, 201: 79-86. http://dx.doi.org/10.1016/j.procs.2022.03.013 DOI: https://doi.org/10.1016/j.procs.2022.03.013
Lyon C, Mayhew D, Granié M-A, Robertson R, Vanlaar W, Woods-Fry H, Thevenet C, Furian G, Soteropoulos A. (2020) Age and road safety performance: Focusing on elderly and young drivers. IATSS Research, 44: 212–219. https://doi.org/10.1016/j.iatssr.2020.08.005 DOI: https://doi.org/10.1016/j.iatssr.2020.08.005
Ali Y, Haque MdM. (2023) Modelling braking behaviour of distracted young drivers in car-following interactions: A grouped random parameters duration model with heterogeneity-in-means. Accident Analysis and Prevention 185: 107015. https://doi.org/10.1016/j.aap.2023.107015 DOI: https://doi.org/10.1016/j.aap.2023.107015
Katrakazas C, Michelaraki E, Sekadakis M, Yannis G. (2020) A descriptive analysis of the effect of the COVID-19 pandemic on driving behavior and road safety. Transportation Research Interdisciplinary Perspectives, 7: 100186 DOI: https://doi.org/10.1016/j.trip.2020.100186
Jannusch T, Shannon D, Völler M, Murphy F, Mullins M. (2021) Smartphone use while driving: An investigation of young novice driver (YND) behaviour. Transportation Research Part F, 77: 209–220. https://doi.org/10.1016/j.trf.2020.12.013 DOI: https://doi.org/10.1016/j.trf.2020.12.013
Brands D, Klingen J, Ostermeijer F. (2022) Hands on the wheel, eyes on the phone: The effect of smartphone usage fees on road safety. European Economic Review 146: 104130.https://doi.org/10.1016/j.euroecorev.2022.104130 DOI: https://doi.org/10.1016/j.euroecorev.2022.104130
Chen C-F (2023) Investigating the effects of job stress on the distraction and risky driving behaviors of food delivery motorcycle riders. Safety and Health at Work, 14: 207-214. DOI: https://doi.org/10.1016/j.shaw.2023.03.004
Papakostopoulos V, Nathanael D. (2021) The complex interrelationship of work-related factors underlying risky driving behavior of food delivery riders in Athens, Greece. Safety and Health at Work 12: 147-153. DOI: https://doi.org/10.1016/j.shaw.2020.10.006
Tanglai W, Chen C-F, Rattanapan C, Laosee, O (2020). The effects of personality and attitude on risky driving behavior among public van drivers: Hierarchical modeling. Safety and Health at Work, 13: 187-191. DOI: https://doi.org/10.1016/j.shaw.2022.03.005
Megías-Robles A, Sanchez-Lopez MT, Fernandez-Berrocal P. (2022) The relationship between self-reported ability emotional intelligence and risky driving behaviour: Consequences for accident and traffic ticket rate. Accident Analysis and Prevention 174: 106760.https://doi.org/10.1016/j.aap.2022.106760 DOI: https://doi.org/10.1016/j.aap.2022.106760
Maghelal PK, Lara JCF, Goonetilleke RS, Luximon A. (2023) Determinants of self-efficacy of driving behavior among young adults in the UAE: Impact of gender, culture, and varying environmental conditions in a simulated environment. Heliyon, 9(3): e13993.https://doi.org/10.1016/j.heliyon.2023.e13993 DOI: https://doi.org/10.1016/j.heliyon.2023.e13993
Zhu Y, Jiang M, Yamamoto T. (2022) Analysis on the driving behavior of old drivers by driving recorder GPS trajectory data. Asian Transport Studies, 8: 100063. https://doi.org/10.1016/j.eastsj.2022.100063 DOI: https://doi.org/10.1016/j.eastsj.2022.100063
Etika A, Merat N, Carsten O. (2021) Identifying salient beliefs underlying speeding behaviour: An elicitation study of Nigerian drivers. Transportation Research Interdisciplinary Perspectives, 9: 100279.https://doi.org/10.1016/j.trip.2020.100279 DOI: https://doi.org/10.1016/j.trip.2020.100279
Babic D, Cavka M, Babic D, Hrabac P. (2022) Young drivers’ perception of speed: VR and video footage comparison study. Transportation Research Procedia, 64: 205-214. https://doi.org/10.1016/j.trpro.2022.09.025 DOI: https://doi.org/10.1016/j.trpro.2022.09.025
Elvik R. (2023). Driver mileage and accident involvement: A synthesis of evidence. Accident Analysis and Prevention 179: 106899.https://doi.org/10.1016/j.aap.2022.106899 DOI: https://doi.org/10.1016/j.aap.2022.106899
Lumba P, Edison B, Fahmi K, Sibarani AS, Ariyanto A, Hidayat A, Rahmi A, Rismalinda.(2022)Effects of Sleep Deprivation on Probability of Traffic Violations in Motorcyclists: Analysis Using Bayesian Network Science and Technology Asia, 27(2): 115-125.
doi: 10.14456/scitechasia.2022.29.
Wijayanto T, Marcillia SR, Lu?tyanto G, Wisnugraha BB, Alma TG, Abdianto RU. (2021) The effect of situation awareness on driving performance in young sleep-deprived drivers. IATSS Research, 45: 218-225.https://doi.org/10.1016/j.iatssr.2020.10.002 DOI: https://doi.org/10.1016/j.iatssr.2020.10.002
Takeyama E, Tomooka K, Wada H, Sato S, Sakiyama N, Shirahama R, Tanigawa T. (2023) Association between daytime sleepiness and motor vehicle accidents among Japanese male taxi drivers. IATSS Research, 47: 299-304.https://doi.org/10.1016/j.iatssr.2023.05.002 DOI: https://doi.org/10.1016/j.iatssr.2023.05.002
Lumba P. (2022) Fatigue Factor on Motorcyclists’ Accident: Analysis UsingBayesian Network. Suranaree J. Sci. Technol., 29(6): 010169(1-9). https://ird.sut.ac.th/e-journal/Journal/pdf/220104831.pdf
Lumba P. (2022) The impact of fatigue and behaviour of driver on probability of accidents severity in motorcyclists.ASM Sc. J, 17: https://doi.org/10.32802/asmscj, DOI: https://doi.org/10.32802/asmscj.2022.989
Bille J, Udholm S. (2022) Obstructive sleep apnea and road traf?c accidents: a Danish nationwide cohort study. Sleep Medicine, 96: 64-69. DOI: https://doi.org/10.1016/j.sleep.2022.04.003
Vipin N, Rahul T. (2021) Road traffic accident mortality analysis based on time of occurrence: Evidence from Kerala, India. Clinical Epidemiology and Global Health, 11: 100745.https://doi.org/10.1016/j.cegh.2021.100745 DOI: https://doi.org/10.1016/j.cegh.2021.100745
Zhao L, Wang C, Yang H, Wu X, Zhu T, Wang J. (2023) Exploring injury severity of non-motor vehicle riders involving in traf?c accidents using the generalized ordered logit model. Ain Shams Engineering Journal, 14: 101962. https://doi.org/10.1016/j.asej.2022.101962 DOI: https://doi.org/10.1016/j.asej.2022.101962
Li K, Xu H, Liu X. (2022) Analysis and visualization of accidents severity based on Light GBM-TPE. Chaos, Solitons and Fractals, 157: 111987 DOI: https://doi.org/10.1016/j.chaos.2022.111987
Barman S, Bandyopadhyaya R. (2023) Modelling crash severity outcomes for low speed urban roads using back propagation – Artificial neural network (BP – ANN) – A case study in Indian context. IATSS Research, 47: 382-400. DOI: https://doi.org/10.1016/j.iatssr.2023.08.002
Madvari RF, Sefidkar R, Halvani GH, Alizadeh HM. (2023) Quantitative indicators of street lighting with mood, fatigue, mental workload and sleepiness in car drivers: Using generalized structural equation modeling. Heliyon, 9: e12904.https://doi.org/10.1016/j.heliyon.2023.e12904 DOI: https://doi.org/10.1016/j.heliyon.2023.e12904
Abdubrani R, Mustafa M,Zahari Zl. (2023) A robust framework for driver fatigue detection from EEG signals using enhancement of modified z-score and multiple machine learning architectures. IIUM Engineering Journal, 24(2):354-372.https://doi.org/10.31436/iiumej.v24i2.2799 DOI: https://doi.org/10.31436/iiumej.v24i2.2799
Davidovic J, Pešic D, Lipovac K, Antic B. (2019) The significance of the development of road safety performance indicators related to driver fatigue. AIIT 2nd International Congress on Transport Infrastructure and Systems in a changing world (TIS ROMA 2019), 23rd-24th September 2019, Rome, Italy. Transportation Research Procedia, 45: 333-342.https://doi.org/10.1016/j.trpro.2020.03.024 DOI: https://doi.org/10.1016/j.trpro.2020.03.024
Cullen P, Moller H, Woodward M, Senserrick T, Boufous S, Rogers K, Brown J, Ivers R. (2021) Are there sex differences in crash and crash-related injury between men and women? A 13-year cohort study of young drivers in Australia. SSM - Population Health, 14: 100816. https://doi.org/10.1016/j.ssmph.2021.100816 DOI: https://doi.org/10.1016/j.ssmph.2021.100816
Gazder U, Khaled J, Assi KJ. (2022) Determining driver perceptions about distractions and modeling their effects on driving behavior at different age groups. Journal of Traf?c and Transportation Engineering (English edition), 9(1): 33-43. https://doi.org/10.1016/j.jtte.2020.12.005 DOI: https://doi.org/10.1016/j.jtte.2020.12.005
Statistik Transportasi Darat; 2021.Available:
CarterM, Raymond BinghamC, ZakrajsekJS,Shope JT, Sayer TB. (2014). Social norms and risk perception: predictors of distracted driving behavior among novice adolescent drivers. Journal of Adolescent Health, 54: S32-S41 DOI: https://doi.org/10.1016/j.jadohealth.2014.01.008
Kementrian Perhubungan; 2020. Available:
Regev S, Rolison JJ, Moutari S. (2018) Crash risk by driver age, gender, and time of day using a new exposure methodology, Journal of Safety Research, 66: 131-140. https://doi.org/10.1016/j.jsr.2018.07.002 DOI: https://doi.org/10.1016/j.jsr.2018.07.002
Chu, H-C. (2020) Risky behaviors of older taxi drivers and suggested requirements for renewing their professional driver’s licenses. Transportation Research Interdisciplinary Perspectives, 8: 100272. https://doi.org/10.1016/j.trip.2020.100272 DOI: https://doi.org/10.1016/j.trip.2020.100272
Skyving M, Forsman A, Willstrand TD, Laflamme L, Moller J. (2021) Medical impairment and road traffic crashes among older drivers in Sweden – A national, population-based, case-control study. Accident Analysis and Prevention, 163: 106434. https://doi.org/10.1016/j.aap.2021.106434 DOI: https://doi.org/10.1016/j.aap.2021.106434
Software GeNie. (2023) https://download.bayesfusion.com/files.html?category=Academia
Zong F, Xu H, Zhang H. (2013) Prediction for traffic accident severity: Comparing the Bayesian network and regression models. Mathematical Problems in Engineering, 2013: 475194.https://doi.org/10.1155/2013/475194 DOI: https://doi.org/10.1155/2013/475194
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.