MIXING SEQUENCE EFFECT OF CEMENT COMPOSITES WITH CARBON FIBRES

Authors

DOI:

https://doi.org/10.31436/iiumej.v25i1.2983

Keywords:

Mixing Sequence, Cement Paste, Carbon Fiber, Engineering Properties, Fiber Dispersion

Abstract

Carbon fibres are widely recognised as reinforcement materials that effectively control cracks in concrete structures. Nonetheless, these fibres do not disperse uniformly inside the cement matrix, disrupting the mixture homogeneity. To address this concern, this study investigated two distinct mixing sequences of cement composites with carbon fibres. Two mixing sequences were investigated including the addition of fibres after cement (AC-CF) and the addition of fibres before cement (BC-CF). The surface topography of carbon fibres and the engineering properties of the cement paste were also examined. Consequently, carbon fibres in cement composite produced lower flowability due to the surface roughness. The AC-CF specimen demonstrated the highest hardened density at 28 days with 2679.22 kg/m3 followed by BC-CF and the control specimen with 2386.08 kg/m3 and 2278.36 kg/3, respectively. The AC-CF specimen also had the highest compressive strength at 28 days with 69.91 MPa, followed by BC-CF and the control specimen with 65.92 MPa and 63.20 MPa, respectively. Further, the flexural strength of the AC-CF specimen exhibited the highest strength with 10.86 MPa, followed by BC-CF and the control specimen with 9.35 MPa and 9.17, respectively. The fibre dispersion in AC-CF was also superior to BC-CF. Therefore, it can be concluded that the best mixing sequence is the addition of fibre after cement (AC-CF) because it had better fibre dispersion and engineering properties compared to the addition of fibre before cement (BC-CF).

ABSTRAK: Gentian karbon lebih dikenali sebagai bahan bantuan yang berkesan dalam mengawal keretakan pada struktur konkrit. Walau bagaimanapun, gentian ini tidak tersebar secara seragam di dalam matrik simen dan akan mengganggu kehomogenan campuran. Bagi mengatasi masalah ini, kajian ini mengkaji tentang dua susunan campuran berbeza simen komposit dengan gentian karbon. Dua susunan campuran ini adalah melalui penambahan gentian selepas simen (AC-CF) dan penambahan gentian sebelum simen (BC-CF). Permukaan topografi gentian karbon dan sifat kejuruteraan pes simen turut diperiksa. Kajian mendapati bahawa gentian karbon dalam komposit simen mengurangkan kebolehaliran pes simen disebabkan oleh kekasaran pada permukaan gentian. Spesimen AC-CF menunjukkan ketumpatan pengerasan tertinggi pada hari ke-28 dengan 2679.22 kg/m3 diikuti spesimen BC-CF dan spesimen kawalan sebanyak 2386.08 kg/m3 dan 2278.36 kg/m3, masing-masing. Spesimen AC-CF juga mempunyai kekuatan mampatan tertinggi pada hari ke-28 dengan 69.91 MPa, diikuti oleh spesimen BC-CF dan spesimen kawalan sebanyak 65.92 MPa dan 63.20 MPa, masing-masing. Seterusnya, kekuatan lenturan spesimen AC-CF menunjukkan kekuatan tertinggi dengan 10.86 MPa, diikuti spesimen BC-CF and spesimen kawalan dengan 9.35 MPa dan 9.17 MPa, masing-masing. Penyebaran gentian dalam AC-CF juga lebih baik daripada BC-CF. Oleh itu, kajian ini merumuskan bahawa susunan campuran terbaik adalah dengan penambahan gentian selepas simen (AC-CF) kerana ia mempunyai kekuatan lenturan gentian terbaik dan sifat kejuruteraan berbanding penambahan gentian sebelum simen
(BC-CF).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ragavendra S, Reddy IP, Dongre DA. (2017) Fibre reinforced concrete – a case study. Proceedings of the Architectural Engineering Aspect for Sustainable Building Envelopes, Khairatabd, Hydreabad, India, 10-11.

ASTM (2007). ASTM C 1116/C 1116M Part 6 – Standard Specification for Fibre-Reinforced Concrete. ASTM International. West Conshohocken.

Abdel-Rahman AG, Mirza FAM, Salah, AA. (2019) An overview of fibre reinforced concrete, FRC and fibres properties and current applications. International Journal of Science and Research (IJSR), 8(10): 504-515.

Thakur P, Singh K. (2018) A review: effect of carbon fibre on different mixes of concrete. International Research Journal of Engineering and Technology (IRJET), 5(3): 3996-3999.

Wang Z, Ma G, Ma Z, Zhang Y. (2021) Flexural behavior of carbon fibre reinforced concrete (RC) beams under impact loading. Cement and Concrete Composites, 118: 103910. DOI: https://doi.org/10.1016/j.cemconcomp.2020.103910

doi: https://doi.org/10.1016/j.cemconcomp.2020.103910

Abbas N, Saad M, Habib M. (2022) Impact of carbon fibres on mechanical and durability properties of self-compacting concrete. Engineering Proceedings, 22(1): 9. DOI: https://doi.org/10.3390/engproc2022022009

doi: https://doi.org/10.3390/engproc2022022009

Aljalawi NMF, Al-Jelawy HM. (2018) Possibility of using concrete reinforced by carbon fibre in construction. International Journal of Engineering and Technology, 7(4.20): 449-452. DOI: https://doi.org/10.14419/ijet.v7i4.20.26241

Salama AHES, Edris WF. (2021) Performance of carbon fibre filament reinforcing cement mortar. Civil Engineering Journal, 7(10): 1693-1701. DOI: https://doi.org/10.28991/cej-2021-03091753

doi: https://doi.org/10.28991/cej-2021-03091753.

Mello E, Ribellato C, Mohamedelhassan E. (2014) Improving concrete properties with fibres addition. International Journal of Civil and Environmental Engineering, 8(3): 249-254.

doi: https://doi.org/10.5281/zenodo.1091168

Li YF, Yang TH, Kuo CY, Tsai YK. (2019) A study on improving the mechanical performance of carbon-fibre-reinforced cement. Materials, 12(17): 2715. DOI: https://doi.org/10.3390/ma12172715

doi: https://doi.org/10.3390/ma12172715

Deepesh P, Jayant K. (2016) Study of mechanical and durability properties of SIFCON by partial replacement of cement with fly ash as defined by an experimental based approach. International Journal for Innovative Research in Science & Technology, 5(5): 8568-8574.

Deore SM, Bodke JS, Aware RV, Ahire CV, Kamble PM, Pendhari AR. (2017) Addition of carbon fibre in concrete with partial replacement of sand by waste foundry sand. International Research Journal of Engineering and Technology (IRJET), 4(4): 2017-2079. DOI: https://doi.org/10.21090/IJAERD.81618

Paul SC, Zijl GPAGv, Savija B. (2020) Effect of fibres on durability of concrete: A practical review. Materials, 13(20): 4562. doi: https://doi.org/10.3390/ma13204562. DOI: https://doi.org/10.3390/ma13204562

ACI Committee 6.44. (1982). State-of-the-art report on fibre reinforced concrete. ACI 6.44 IR, ACI, Detroit.

Gao J, Wang Z, Zhang T, Zhou L. (2017) Dispersion of carbon fibres in cement-based composites with different mixing methods. Construction and Building Materials, 134: 220-227. doi: https://doi.org/10.1016/j.conbuildmat.2016.12.047 DOI: https://doi.org/10.1016/j.conbuildmat.2016.12.047

Gyawali TR. (2019) Investigation on mixing process for the development of high ductile mortar containing thin and short fibres. Investigation Journal of Materials Engineering, 9(1): 8-15. DOI: https://doi.org/10.1007/s42452-019-0336-4

De Franca MS, Cardoso FA, Pileggi RG. (2016) Influence of the addition sequence of PVA-fibres and water on mixing and rheological behavior of mortars. Ibracon Structures and Materials Journal, 9(2): 226-243. doi: https://doi.org/10.1590/S1983-41952016000200005 DOI: https://doi.org/10.1590/S1983-41952016000200005

Zhou J, Qian S, Ye G, Copuroglu O, Breugel KV, Li VC. (2012) Improved fibre distribution and mechanical properties of engineered cementitious composites by adjusting the mixing sequence. Cement & Concrete Composites, 34(3): 342-348. DOI: https://doi.org/10.1016/j.cemconcomp.2011.11.019

doi: https://doi.org/10.1016/j.cemconcomp.2011.11.019

ASTM. (1999). ASTM C305-94 – Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM International. West Conshohocken.

ASTM. (2007). ASTM C1437-20 – Standard Test Method for Flow of Hydraulic Cement Mortar. ASTM International. West Conshohocken.

BSI. (1999). BS EN 1015-10 – Methods of Test for Mortar for Masonry – Part 10: Determination of Dry Bulk Density of Hardened Mortar. British Standard. BSI Standards Limited.

ASTM. (1999). ASTM C 109/C109M-02 – Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens). ASTM International. West Conshohocken.

ASTM. (2002). ASTM C 348-02 – Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars. ASTM International. West Conshohocken.

He S, Yang EH. (2021) Strategic strengthening of the interfacial transition zone (ITZ) between microfibre and cement paste matrix with carbon nanofibres (CNFs). Cement and Concrete Composite, 119: 104019. doi: https://doi.org/10.1016/j.cemconcomp.2021.104019 DOI: https://doi.org/10.1016/j.cemconcomp.2021.104019

Kao GJ, Gowripalan N, Bandyopadhyay S. (2000) Preliminary studies of carbon fibre reinforced cementitious composites by AFM and FESEM. International Composites Conference (ACUN-2), Sydney, New South Wales, Australia.

Li M, Li VC. (2013) Rheology, fibre dispersion, and robust properties of engineered cementitious composites. Materials and Structures, 46: 405-420. DOI: https://doi.org/10.1617/s11527-012-9909-z

Othman R, Jaya RP, Muthusamy K, Sulaiman M, Duraisamy Y, Abdullah MMAB, Przybl A, Sochacki W, Skrzypczak T, Vizureanu P, Sandu AV. (2021) Relation between density and compressive strength of foamed concrete. Materials, 14(11): 2967. DOI: https://doi.org/10.3390/ma14112967

doi: https://doi.org/10.3390/ma14112967

Zaid O, Ahmad J, Siddique MS, Aslam F, Alabduljabbar H, Khedher KM. (2021) A step towards sustainable glass fibre reinforced concrete utilising silica fume and waste coconut shell aggregate. Scientific Reports, 11: 12822. https://doi.org/10.1038/s41598-021-92228-6. DOI: https://doi.org/10.1038/s41598-021-92228-6

Zhu H, Zhou H, Gou H. (2021) Evaluation of carbon ?ber dispersion in cement-based materials using mechanical properties, conductivity, mass variation coef?cient, and microstructure. Construction and Building Materials, 266(A): 120891. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120891

doi: https://doi.org/10.1016/j.conbuildmat.2020.120891

Wang C, Li KZ, Li HJ, Jiao GS, Lu J, Hou DS. (2008) Effect of carbon ?ber dispersion on the mechanical properties of carbon ?ber-reinforced cement-based composites. Materials Science and Engineering: A, 487(1-2): 52-57. doi: https://doi.org/10.1016/j.msea.2007.09.073. DOI: https://doi.org/10.1016/j.msea.2007.09.073

Downloads

Published

2024-01-01

How to Cite

Rizalman, A. N., Anthony, E. N., Thurairajah, A. R., S.Z.A., S. M. I., & Sulaiman, M. F. (2024). MIXING SEQUENCE EFFECT OF CEMENT COMPOSITES WITH CARBON FIBRES. IIUM Engineering Journal, 25(1), 142–152. https://doi.org/10.31436/iiumej.v25i1.2983

Issue

Section

Civil and Environmental Engineering

Funding data