Recent Advances in Enhanced Polyamidoamine Inhibitors for Silicate Scales in the Petroleum Upstream

Authors

DOI:

https://doi.org/10.31436/iiumej.v25i2.2933

Keywords:

Green Inhibitor, Polymers, sodium silicate solutions, Enhanced Oil Recovery, oil and gas, Quartz Sand, alkali treatment

Abstract

Chemical flooding is regarded as a promising enhanced oil recovery technique to recover more hydrocarbon from reservoirs. However, the dissolution of quartz minerals in a highly alkaline environment poses the risk of silicate scaling near the production well region from the mixing of two different waters. Commercial scale inhibitors are effective, but they are also harmful to the environment. This paper aims to provide insights into current advances in environment-friendly or “green” scale inhibitors for petroleum upstream. Previous research works have demonstrated that green chemicals are effective in mitigating silicate, carbonate, and sulfide scales. Polyamidoamine or amide-based inhibitors have been widely investigated in recent literature due to several advantages. The addition of anionic compounds in these inhibitors enhanced scale inhibition efficiency by roughly 10%. Nevertheless, the reported findings were deliberated for industrial wastewater treatment. Meanwhile, understanding the performance of polyamidoamine or amide-based scale inhibitors in petroleum upstream is inadequate to a certain extent. The formation process of silicate scales inside a reservoir is rather complicated by looking at the influence of water salinity, composition of brine, temperature, pressure, and rock type. Hence, it is essential to study and develop green scale inhibitors that are effective and environmentally friendly to meet increasingly stringent disposal regulations in the petroleum industry.

ABSTRAK:  Pembanjiran kimia merupakan teknik pemulihan minyak. Ia berpotensi dalam memperoleh lebih banyak hidrokarbon dari takungan. Namun, pelarut mineral kuarza dalam persekitaran beralkali tinggi memberi risiko penumpukan silikat berhampiran kawasan takungan pengeluaran. Ia disebabkan oleh pencampuran dua jenis cecair berbeza. Perencat penumpukan silikat komersial adalah berkesan, tetapi sangat berbahaya pada alam sekitar. Kajian ini bertujuan bagi menambahbaik kemajuan perencat silikat mesra alam terkini atau perencat silikat hijau bagi bidang saliran petroleum. Kajian terdahulu telah membuktikan bahawa bahan kimia mesra alam adalah berkesan dalam pengurangan penumpukan silikat, karbonat dan sulfida. Perencat poliamidoamina atau perencat bersumber amida telah dikaji secara meluas dalam beberapa kajian sejak kebelakangan ini kerana kelebihannya yang banyak. Penambahan sebatian anionik dalam perencat ini mampu meningkatkan keberkesanan perencat silikat sebanyak 10%. Namun, laporan kajian terdahulu adalah khusus bagi rawatan sisa air industri. Sementara itu, pemahaman tentang prestasi perencat silikat bersumberkan poliamidoamina atau perencat bersumber amida dalam saliran petroleum masih tidak mencukupi. Proses pembentukan penumpukan silikat dalam takungan adalah agak rumit berdasarkan faktor saliniti air, komposisi air garam, suhu, tekanan dan jenis batuan. Oleh itu, kajian dan pembangunan berkesan tentang perencat silikat mesra alam adalah penting bagi memenuhi peraturan pelupusan sisa yang semakin ketat dalam industri petroleum.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Tan Bee Chea, Universiti Teknologi Petronas

PhD student and Graduate Research Assistant in Petrolem Engineering Department

Ismail Mohd Saaid, Universiti Teknologi Petronas

Associate Professor in Petroleum Engineering Department

Shiferaw Regassa Jufar, Universiti Teknologi Petronas

Senior Lecturer in Petroleum Engineering Department

Suzalina Zainal, Petronas (Malaysia)

Principal Scientist in PETRONAS Research Sdn Bhd

Abdelazim Abbas Ahmed Awadelseed, Wood PLC Group

Sr. Flow Assurance Engineer in Wood PLC Group

References

Tveiten OG. (2023) Guest editorial: recycling CO2 for EOR? Why not? J Pet Technol., 75(2):10-13. doi:10.2118/0223-0010-JPT DOI: https://doi.org/10.2118/0223-0010-JPT

Gbadamosi AO, Junin R, Manan MA, Agi A, Yusuff AS. (2019) An overview of chemical enhanced oil recovery: recent advances and prospects. Int Nano Lett., 9(3):171-202. doi:10.1007/s40089-019-0272-8 DOI: https://doi.org/10.1007/s40089-019-0272-8

Ragab A, Mansour EM. (2021) Enhanced oil recovery: Chemical flooding. In Geophysics and Ocean Waves Studies. Edited by Essa KS, Risio MD, Celli D, Pasquali D. London, IntechOpen; pp 1-13. doi: 10.5772/intechopen.90335 DOI: https://doi.org/10.5772/intechopen.90335

Sarbast R, Salih N, Préat A. (2022) A critical overview of ASP and future perspectives of NASP in EOR of hydrocarbon reservoirs: potential application, prospects, challenges and governing mechanisms. Nanomaterials, 12(22):4007. doi:10.3390/nano12224007 DOI: https://doi.org/10.3390/nano12224007

Wu X. (2018) Formation damage by inorganic deposition. In Formation Damage During Improved Oil Recovery: Fundamentals and Applications. Edited by Yuan B, Wood DA. Oxford, Elsevier; pp 217-242. doi: 10.1016/B978-0-12-813782-6.00005-1 DOI: https://doi.org/10.1016/B978-0-12-813782-6.00005-1

Sun C, Guo H, Li Y, Jiang G, Ma R. (2020) Alkali effect on alkali-surfactant-polymer (ASP) flooding enhanced oil recovery performance: two large-scale field tests’ evidence. J Chem., 2020:2829565. doi:10.1155/2020/2829565 DOI: https://doi.org/10.1155/2020/2829565

Hunter K, McInnis L, Ellis-Toddington T, Kerr S. (2013) The use of modeling and monitoring to control scale in Alberta ASP floods. In Proceedings of the SPE Enhanced Oil Recovery Conference: 2-4 July 2013; Kuala Lumpur. doi:10.2118/165285-MS DOI: https://doi.org/10.2118/165285-MS

Mpelwa M, Tang SF. (2019) State of the art of synthetic threshold scale inhibitors for mineral scaling in the petroleum industry: a review. Pet Sci., 16(4):830-849. doi:10.1007/s12182-019-0299-5 DOI: https://doi.org/10.1007/s12182-019-0299-5

Malaie K, Shojaei O, Iranpour S, Taherkhani Z. (2021) Crystal growth inhibition of gypsum under normal conditions and high supersaturations by a copolymer of phosphino-polycarboxylic acid. Heliyon, 7(1):e06064. doi:10.1016/j.heliyon.2021.e06064 DOI: https://doi.org/10.1016/j.heliyon.2021.e06064

Li J, Tang M, Ye Z, Chen L, Zhou Y. (2017) Scale formation and control in oil and gas fields: a review. J Dispersion Sci Technol., 38(5):661-670. doi:10.1080/01932691.2016.1185953 DOI: https://doi.org/10.1080/01932691.2016.1185953

Olajire AA. (2015) A review of oilfield scale management technology for oil and gas production. J Pet Sci Eng., 135:723-737. doi:10.1016/j.petrol.2015.09.011 DOI: https://doi.org/10.1016/j.petrol.2015.09.011

Fink J. (2021) Scale inhibitors. In Petroleum Engineer's Guide to Oil Field Chemicals and Fluids. 3rd edition. Edited by Fink J. Oxford, Elsevier; pp 351-391. doi: 10.1016/B978-0-323-85438-2.00007-4 DOI: https://doi.org/10.1016/B978-0-323-85438-2.00007-4

Yuan B, Wood DA. (2018) Overview of formation damage during improved and enhanced oil recovery. In Formation Damage During Improved Oil Recovery: Fundamentals and Applications. Edited by Yuan B, Wood DA. Oxford, Gulf Professional Publishing; pp 1-20. doi: 10.1016/B978-0-12-813782-6.00001-4 DOI: https://doi.org/10.1016/B978-0-12-813782-6.00001-4

Sheng JJ. (2016) Formation damage in chemical enhanced oil recovery processes. Asia-Pac J Chem Eng., 11(6):826-835. doi:10.1002/apj.2035 DOI: https://doi.org/10.1002/apj.2035

Al Kalbani M, Jordan M, Mackay E, Sorbie K, Nghiem L. (2021) Modelling the impact of alkaline-surfactant and alkaline-surfactant-polymer flooding processes on scale precipitation and management. J Pet Sci Eng., 205:108777. doi:10.1016/j.petrol.2021.108777 DOI: https://doi.org/10.1016/j.petrol.2021.108777

Saadi MA, Haddabi NA. (2019) The root of silica scale formation and its remedy. Glob J Eng Sci., 3(3):1-3. doi:10.33552/gjes.2019.03.000565 DOI: https://doi.org/10.33552/GJES.2019.03.000565

Sazali RA, Sorbie KS, Boak LS. (2015) The effect of pH on silicate scaling. In Proceedings of the SPE European Formation Damage Conference and Exhibition: 3-5 June 2015; Budapest. doi:10.2118/174193-MS DOI: https://doi.org/10.2118/174193-MS

Lu H, Liu Y, Watson B. (2021) Silicate scale inhibitor evaluation and applications. In Proceedings of the CORROSION 2021: 19-30 April 2021; Virtual. Retrieved from https://onepetro.org/NACECORR/proceedings/CORR21/4-CORR21/D041S017R001/463741

Sazali RA, Sorbie KS, Boak LS, Al Badri NS, Veny H, Hamid FHA, Abidin MZZ. (2022) Silicate scaling formation: impact of pH in high-temperature reservoir and its characterization study. Bull Chem React Eng Catal., 17(3):661-682. doi:10.9767/bcrec.17.3.15290.661-682 DOI: https://doi.org/10.9767/bcrec.17.3.15290.661-682

Arensdorf J, Hoster D, McDougall D, Yuan M. (2010) Static and dynamic testing of silicate scale inhibitors. In Proceedings of the International Oil and Gas Conference and Exhibition in China: 8-10 June 2010; Beijing. doi:10.2118/132212-MS DOI: https://doi.org/10.2523/132212-MS

Bai Y, Bai Q. (2019) Subsea corrosion and scale. In Subsea Engineering Handbook. 2nd edition. Edited by Bai Y, Bai Q. Oxford, Elsevier; pp 455-487. doi: 10.1016/B978-0-12-812622-6.00017-8 DOI: https://doi.org/10.1016/B978-0-12-812622-6.00017-8

Scopus Database [https://www.scopus.com/term/analyzer.uri?sort=plf-f&src=s&sid=568bdc83411ca1d7415b595f258ca945&sot=a&sdt=a&sl=74&s=TITLE-ABS-KEY%28green+scale+inhibitor%29+AND+PUBYEAR+%3e+2012+AND+PUBYEAR+%3c+2024&origin=resultslist&count=10&analyzeResults=Analyze+results]

Web of Science Database [https://www.webofscience.com/wos/woscc/analyze-results/67b0eceb-8dd5-488f-871b-2970f6a768ad-89304a51]

Spinthaki A, Demadis KD. (2020) Chemical methods for scaling control. In Corrosion and Fouling Control in Desalination Industry. Edited by Saji VS, Meroufel AA, Sorour AA. Switzerland, Springer Nature; pp 307-342. doi: 10.1007/978-3-030-34284-5_15 DOI: https://doi.org/10.1007/978-3-030-34284-5_15

Shi F, Zhuang X, Cui C, Zhang S. (2022) Synthesis, characterization and scale inhibition performance evaluation of novel dendrimers with the initiator core of pentaerythritol derivative. Desalination, 528:115632. doi:10.1016/j.desal.2022.115632 DOI: https://doi.org/10.1016/j.desal.2022.115632

Sun Y, Yin X, Chen Z, Yang W, Chen Y, Liu Y, Zuo Y, Li L. (2021) Use of polyaminoamide dendrimers starting from different core-initial molecules for inhibition of silica scale: experiment and theory. Colloids Surf A Physicochem Eng Asp., 613:126095. doi:10.1016/j.colsurfa.2020.126095 DOI: https://doi.org/10.1016/j.colsurfa.2020.126095

Tan M, Fang L, Zhang B, Zhao Y, Meng X, Li F. (2021) Synergistic inhibition effect and mechanism of polycation and polyanion on colloidal silica. Colloids Surf A Physicochem Eng Asp., 610:125701. doi:10.1016/j.colsurfa.2020.125701 DOI: https://doi.org/10.1016/j.colsurfa.2020.125701

Hayati N, Humaida H, Siswanta D. (2021) Adsorption of silicate anions from geothermal brine using chitosan-polyethylene glycol composite to prevent silica scaling on the Dieng Geo Dipa geothermal energy system. Indones J Chem., 21(5):1063-1071. doi:10.22146/ijc.49248 DOI: https://doi.org/10.22146/ijc.49248

Bai S, Han J, Du C, Ding W. (2019) Selective removal of silicic acid by a gallic-acid modified resin. J Water Reuse Desalin., 9(4):431-441. doi:10.2166/wrd.2019.030 DOI: https://doi.org/10.2166/wrd.2019.030

Spinthaki A, Kamaratou M, Skordalou G, Petratos G, Tramaux A, David G, Demadis KD. (2021) A universal scale inhibitor: a dual inhibition/dispersion performance evaluation under difficult brine stresses. Geothermics, 89:101972. doi:10.1016/j.geothermics.2020.101972 DOI: https://doi.org/10.1016/j.geothermics.2020.101972

Spinthaki A, Kamaratou M, Skordalou G, Petratos G, Petrou I, Tramaux A, David G, Demadis KD. (2021) Searching for a universal scale inhibitor: a multi-scale approach towards inhibitor efficiency. Geothermics, 89:101954. doi:10.1016/j.geothermics.2020.101954 DOI: https://doi.org/10.1016/j.geothermics.2020.101954

Neofotistou E, Demadis KD. (2004) Silica scale inhibition by polyaminoamide STARBURST® dendrimers. Colloids Surf A Physicochem Eng Asp., 242(1-3):213-216. doi:10.1016/j.colsurfa.2004.04.067 DOI: https://doi.org/10.1016/j.colsurfa.2004.04.067

Neofotistou E, Demadis KD. (2004) Use of antiscalants for mitigation of silica (SiO2) fouling and deposition: fundamentals and applications in desalination systems. Desalination, 167:257-272. doi:10.1016/j.desal.2004.06.135 DOI: https://doi.org/10.1016/j.desal.2004.06.135

Mavredaki E, Neofotistou E, Demadis KD. (2005) Inhibition and dissolution as dual mitigation approaches for colloidal silica fouling and deposition in process water systems:? functional synergies. Ind Eng Chem Res., 44(17):7019-7026. doi:10.1021/ie0501982 DOI: https://doi.org/10.1021/ie0501982

Demadis KD. (2005) A structure/function study of polyaminoamide dendrimers as silica scale growth inhibitors. J Chem Technol Biotechnol., 80(6):630-640. doi:10.1002/jctb.1242 DOI: https://doi.org/10.1002/jctb.1242

Rajeswari A, Amalraj A, Pius A. (2015) Removal of phosphate using chitosan-polymer composites. J Environ Chem Eng., 3(4):2331-2341. doi:10.1016/j.jece.2015.08.022 DOI: https://doi.org/10.1016/j.jece.2015.08.022

Ren B, Wang K, Zhang B, Li H, Niu Y, Chen H, Yang Z, Li X, Zhang H. (2019) Adsorption behavior of PAMAM dendrimers functionalized silica for Cd(II) from aqueous solution: experimental and theoretical calculation. J Taiwan Inst Chem Eng., 101:80-91. doi:10.1016/j.jtice.2019.04.037 DOI: https://doi.org/10.1016/j.jtice.2019.04.037

Sohail I, Bhatti IA, Ashar A, Sarim FM, Mohsin M, Naveed R, Yasir M, Iqbal M, Nazir A. (2020) Polyamidoamine (PAMAM) dendrimers synthesis, characterization and adsorptive removal of nickel ions from aqueous solution. J Mater Res Technol., 9(1):498-506. doi:10.1016/j.jmrt.2019.10.079 DOI: https://doi.org/10.1016/j.jmrt.2019.10.079

Mahat SQA, Saaid IM. (2017) Development of anionic-cationic inhibitors for mitigating silicate scales during ASP flooding. J Pet Sci Eng., 149:701-706. doi:10.1016/j.petrol.2016.10.061 DOI: https://doi.org/10.1016/j.petrol.2016.10.061

Chen F, Wu K, Liu Y, Huang H, He K. (2014) Polyaminoamide dendrimers surface-modified with anionic terminal groups for use as calcium carbonate scale inhibitors. J Polym Eng., 34(8):733-738. doi:10.1515/polyeng-2014-0130 DOI: https://doi.org/10.1515/polyeng-2014-0130

Demadis KD, Neofotistou E. (2007) Synergistic effects of combinations of cationic polyaminoamide dendrimers/anionic polyelectrolytes on amorphous silica formation:? a bioinspired approach. Chem Mater., 19(3):581-587. doi:10.1021/cm062370d DOI: https://doi.org/10.1021/cm062370d

Downloads

Published

2024-07-14

How to Cite

Tan, B. C., Mohd Saaid, I., Jufar, S. R., Zainal, S., & Ahmed Awadelseed, A. A. (2024). Recent Advances in Enhanced Polyamidoamine Inhibitors for Silicate Scales in the Petroleum Upstream. IIUM Engineering Journal, 25(2), 17–31. https://doi.org/10.31436/iiumej.v25i2.2933

Issue

Section

Chemical and Biotechnology Engineering

Funding data

Most read articles by the same author(s)