INVESTIGATION OF THE PROPERTIES OF LITHIUM-CONTAINING CERAMICS BASED ON LOW-PLASTIC CLAY

Authors

DOI:

https://doi.org/10.31436/iiumej.v25i1.2925

Keywords:

facing ceramics, low-plasticity clay, self-glazing, fluxing agent, vitreous phase

Abstract

Nowadays the production of construction materials and items is a multi-tonnage and actively developing production sphere. The regulatory requirements imposed on construction materials and products provide the assessment of their quality and application efficiency in construction or reconstruction of buildings and structures. The constantly increasing regulatory requirements and the limited availability of high-quality natural reserves demand the rapid development of new raw material resources. This paper presents the results of charge composition development based on low-plasticity clay, which has seen limited application due to the poor performance of items produced from it. However, certain functional additives can be introduced for producing high-quality materials. In this work, alongside lithium carbonate, the following additives have been considered: boric acid used as flux and titanium dioxide as a vitreous phase source. The lithium carbonate effect on total and open porosity, density, thermal conductivity, water absorption, frost resistance, compressive and bending strength has been studied. On the one hand lithium carbonate was found to demonstrate a pore-forming effect due to its decomposition during firing. On the other hand, lithium oxide formed during the additive decomposition facilitated the viscosity reduction of the vitreous phase during firing and its strength increase after cooling. Lithium oxide, similar to boric acid, is a flux, which makes further temperature reduction of liquid-phase sintering possible while preserving the surface self-glazing effect and the formation of the closed-pored internal structure of ceramics. The lithium carbonate pore-forming effect prevails over the flux-hardening and therefore, the amount this additive should be limited to obtain high performance properties and the compliance of resulting ceramics with regulatory requirements. The resulting ceramic material can be used for manufacturing products for buildings’ and structures’ plinth lining.

ABSTRAK: Pada masa kini, pengeluaran bahan dan barangan pembinaan adalah dalam gandaan tan dan aktif dibangunkan terutama dalam bidang pengeluaran. Keperluan pengawalseliaan bahan dan produk pembinaan menyediakan aplikasi penilaian kualiti dan kecekapan pembinaan atau pembinaan semula bangunan dan struktur. Peningkatan berterusan terhadap keperluan pengawalseliaan dan ketersediaan rizab semula jadi berkualiti tinggi yang terhad menuntut kepada pembangunan pesat sumber bahan mentah baru berkembang. Kajian ini memperkenalkan hasil pembangunan komposisi caj berdasarkan tanah liat keplastikan rendah, di mana aplikasi terhad kepada keburukan bahan yang dihasilkan, namun bahan tambahan tertentu boleh diperkenalkan bagi menghasilkan bahan berkualiti tinggi. Menggunakan litium karbonat bersama bahan tambahan berikut: asid borik digunakan sebagai fluks dan titanium dioksida sebagai sumber fasa vitreus, telah diambil kira dalam kajian ini. Kesan litium karbonat pada keliangan, ketumpatan, kekonduksian terma, penyerapan air, rintangan fros, kekuatan mampatan dan lenturan telah dikaji. Litium karbonat didapati menunjukkan kesan pembentukan liang dalam proses penguraian semasa pembakaran. Sebaliknya, litium oksida dibentuk semasa penguraian aditif dan membantu dalam pengurangan kelikatan fasa vitreus semasa pembakaran dan kekuatannya meningkat selepas penyejukan. Litium oksida, serupa dengan asid borik, adalah fluks, berpotensi menyebabkan suhu sinteran terus berkurang pada fasa cecair sambil mengekalkan kesan kilauan pada permukaan kaca dan menutup pembentukan struktur liang dalaman seramik. Kesan pembentukan liang litium karbonat adalah mengatasi pengerasan fluks. Oleh itu, jumlah bahan tambah ini harus dihadkan bagi mencapai piawaian dan prestasi tinggi seramik yang terhasil. Bahan seramik yang terhasil ini boleh digunakan sebagai lapisan plint bangunan dan struktur dalam pembuatan produk.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Kusiorowski R, Gerle A, Dudek K, Zwi?zek K. (2021) Application of hard coal combustion residuals in the production of ceramic building materials. Construction and Building Materials, 304: 124506. doi: 10.1016/j.conbuildmat.2021.124506 DOI: https://doi.org/10.1016/j.conbuildmat.2021.124506

Limame H, Manssouiri I, Cherkaoui K, Khaldoun A. (2021) Mechanical and physicochemical performances of reinforced unfired clay bricks with recycled Typha-fibers waste as a construction material additive. Cleaner Engineering and Technology, 2: 100037.

doi: 10.1016/j.clet.2020.100037 DOI: https://doi.org/10.1016/j.clet.2020.100037

Luo Y, Bao S, Zhang Y. (2022) Recycling of granite powder and waste marble produced from stone processing for the preparation of architectural glass–ceramic. Construction and Building Materials, 346: 128408. doi: 10.1016/j.conbuildmat.2022.128408 DOI: https://doi.org/10.1016/j.conbuildmat.2022.128408

Simão FV, Chambart H, Vandemeulebroeke L, Cappuyns V. (2021) Incorporation of sulphidic mining waste material in ceramic roof tiles and blocks. Journal of Geochemical Exploration, 225: 106741. doi: 10.1016/j.gexplo.2021.106741 DOI: https://doi.org/10.1016/j.gexplo.2021.106741

Belfore CM, Amato C, Pezzino A, Viccaro M. (2020) An end of waste alternative for volcanic ash: A resource in the manufacture of ceramic tiles. Construction and Building Materials, 263: 120118. doi: 10.1016/j.conbuildmat.2020.120118 DOI: https://doi.org/10.1016/j.conbuildmat.2020.120118

Li Z, Zha, M, Zeng J, Peng C, Wu J. (2017) High-solar-reflectance building ceramic tiles based on titanite (CaTiSiO5) glaze. Solar Energy, 153: 623-627. doi: 10.1016/j.solener.2017.04.033 DOI: https://doi.org/10.1016/j.solener.2017.04.033

Vakalova TV, Revva IB. (2022) Highly porous building ceramics based on «clay-ash microspheres» and «zeolite-ash microspheres» mixtures. Construction and Building Materials, 317: 125922. doi: 10.1016/j.conbuildmat.2021.125922 DOI: https://doi.org/10.1016/j.conbuildmat.2021.125922

Korah LV, Nigay PM, Cutard T, Nzihou A, Thomas S. (2016) The impact of the particle shape of organic additives on the anisotropy of a clay ceramic and its thermal and mechanical properties. Construction and Building Materials, 125: 654-660.

doi: 10.1016/j.conbuildmat.2016.08.094 DOI: https://doi.org/10.1016/j.conbuildmat.2016.08.094

Vakalova TV, Revva IB. (2020) Use of zeolite rocks for ceramic bricks based on brick clays and clay loams with high drying sensitivity. Construction and Building Materials, 255: 119324. doi: 10.1016/j.conbuildmat.2020.119324 DOI: https://doi.org/10.1016/j.conbuildmat.2020.119324

Alonso-De la Garza DA, Guzmán AM, Gómez-Rodríguez C, Martínez DI. (2022) Elizondo Influence of Al2O3 and SiO2 nanoparticles addition on the microstructure and mechano-physical properties of ceramic tiles. Ceramics International, 48(9): 12712-12720.

doi: 10.1016/j.ceramint.2022.01.140 DOI: https://doi.org/10.1016/j.ceramint.2022.01.140

Contreras M., Teixeira SR, Santos GTA, Gázquez MJ, Romero M, Bolívar JP. (2018) Influence of the addition of phosphogypsum on some properties of ceramic tiles. Construction and Building Materials, 175: 588-600. doi: 10.1016/j.conbuildmat.2018.04.131 DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.131

Kizinievi? O, Žurauskien? R, Kizinievi? V, Žurauskas R. (2013) Utilisation of sludge waste from water treatment for ceramic products. Construction and Building Materials, 41: 464-473. doi: 10.1016/j.conbuildmat.2012.12.041 DOI: https://doi.org/10.1016/j.conbuildmat.2012.12.041

Kizinievi? O, Balkevi?ius V, Pranckevi?ien? J, Kizinievi? V. (2015) Analysis of the effect of syenite alkali aluminium concentrate (SAAC) on the properties of ceramic products containing the centrifugation waste of a mineral wool melt. Ceramics International, 41(9, Part A): 11234-11241. doi: 10.1016/j.ceramint.2015.05.074 DOI: https://doi.org/10.1016/j.ceramint.2015.05.074

Cremades LV, Cusidó JA, Arteaga F. (2018) Recycling of sludge from drinking water treatment as ceramic material for the manufacture of tiles. Journal of Cleaner Production, 201: 1071-1080. doi: 10.1016/j.jclepro.2018.08.094 DOI: https://doi.org/10.1016/j.jclepro.2018.08.094

Bohn BP, Von Mühlen C, Pedrotti MF, Zimmer A. (2021) A novel method to produce a ceramic paver recycling waste glass. Cleaner Engineering and Technology, 2: 100043.

doi: 10.1016/j.clet.2021.100043 DOI: https://doi.org/10.1016/j.clet.2021.100043

Vigneron TQG, Vieira CMF, Delaqua GCG, Júnior FV, Neto ÂC. (2019) Incorporation of mold flux waste in red ceramic. Journal of Materials Research and Technology, 8(6): 5707-5715.

doi: 10.1016/j.jmrt.2019.09.038 DOI: https://doi.org/10.1016/j.jmrt.2019.09.038

Hadi EM, Hussein SI. (2019) A sustainable method for Porous refractory ceramic Manufacturing from kaolin by adding of burned and raw wheat straw. Energy Procedia, 157: 241-253. doi: 10.1016/j.egypro.2018.11.187 DOI: https://doi.org/10.1016/j.egypro.2018.11.187

Shakhova VN, Berezovskaya AV, Pikalov ES, Selivanov OG, Sysoev ÉP. (2019) Development of Self-Glazing Ceramic Facing Material Based on Low-Plasticity Clay. Glass and Ceramics, 76(1-2): 11-15. doi: 10.1007/s10717-019-00123-4 DOI: https://doi.org/10.1007/s10717-019-00123-4

Vitkalova I, Torlova A, Pikalov E, Selivanov O. (2018) Development of environmentally safe acid-resistant ceramics using heavy metals containing waste. MATEC Web of Conferences, 193: 03035. doi: 10.1051/matecconf/201819303035 DOI: https://doi.org/10.1051/matecconf/201819303035

Kolosova A, Sokolskaya M, Pikalov E, Selivanov O. (2019) Production of facing ceramic material using cullet. E3S Web of Conferences, 91: 02003. doi: 10.1051/e3sconf/20199102003 DOI: https://doi.org/10.1051/e3sconf/20199102003

Pavlycheva EA, Pikalov ES, Selivanov OG. (2021) Recovery of Polymer Waste in the Production of Ceramics Veneer with a Self-glazing Effect. Ecology and Industry of Russia, 25(6): 20-25. doi: 10.18412/1816-0395-2021-6-20-25 DOI: https://doi.org/10.18412/1816-0395-2021-6-20-25

Pavlycheva EA, Pikalov ES, Selivanov OG. (2021) Glazing effect for producing environmentally friendly ceramics for cladding applications. Hemijska Industrija, 75(3): 167-173. doi: 10.2298/HEMIND210112017P DOI: https://doi.org/10.2298/HEMIND210112017P

Shimanskaya AN, Levitskii IA. (2016) Formation Particularities of titanium-containing glaze coatings for floor tiles. Glass and Ceramics, 73(3-4): 94-99. doi: 10.1007/s10717-016-9833-8 DOI: https://doi.org/10.1007/s10717-016-9833-8

Santos GG, Serbena FC, Fokin VM, Zanotto ED. (2017) Microstructure and mechanical properties of nucleant-free Li2O-CaO-SiO2 glass-ceramics. Acta Materialia, 130: 347-360.

doi: 10.1016/j.actamat.2017.03.010 DOI: https://doi.org/10.1016/j.actamat.2017.03.010

Aliyah LH, Katrina AT, Hasmaliza M. (2019) Preliminary Study on the Development of New Composition Lithium Aluminosilicate Glass Ceramic. Materials Today: Proceedings, 17(3): 946-952. doi: 10.1016/j.matpr.2019.06.446 DOI: https://doi.org/10.1016/j.matpr.2019.06.446

Surzhikov AP, Lysenko EN, Malyshev AV, Pritulov AM, Kazakovskaya OG. (2012) Influence of mechanical activation of initial reagents on synthesis of lithium ferrite. Russian Physics Journal, 55: 672-677. doi: doi.org/10.1007/s11182-012-9865-7 DOI: https://doi.org/10.1007/s11182-012-9865-7

Downloads

Published

2024-01-01

How to Cite

Filippova, L., Akimova, A., Pikalov, E., & Selivanov, O. (2024). INVESTIGATION OF THE PROPERTIES OF LITHIUM-CONTAINING CERAMICS BASED ON LOW-PLASTIC CLAY. IIUM Engineering Journal, 25(1), 291–391. https://doi.org/10.31436/iiumej.v25i1.2925

Issue

Section

Materials and Manufacturing Engineering