PHOTOVOLTAIC MODULE TEMPERATURE ESTIMATION MODEL FOR THE ONE-TIME-POINT DAILY ESTIMATION METHOD
DOI:
https://doi.org/10.31436/iiumej.v25i1.2913Keywords:
Daily module temperature, Daily output power, Hour-based climatic data, Day-based climatic data, Estimation methodAbstract
Based on the hourly solar radiation and ambient temperature, the hourly power estimation work is carried out using the conventional photovoltaic output power (PVOP) estimation model which is used in conjunction with the conventional photovoltaic module temperature (PVMT) estimation model. These hourly data must be processed further before they can be applied to the daily power estimation work. This estimation work is carried out using conventional estimation methods, which are the multiple estimation processes that are complex, time-consuming, and error prone. Therefore, to avoid these shortcomings, one estimation process is designed and used for daily power estimation work. However, this process produces an incorrect daily output power value due to an invalid module temperature value. Thus, a new PVMT estimation model is developed to solve the problem of the invalid value based on a simple linear regression analysis. The performance of the new model has been validated, giving a Normalized Root Mean Squared Error (NRMSE) value of 0.0215 and a Coefficient of Determination (R2) value of 0.9862. The correct daily output power value is produced with a valid module temperature value, giving a NRMSE value of 0.0034 and a R2 value of 0.9999. These results demonstrate the new model's applicability and makes the one estimation process accurate, easy, user-friendly, instantaneous, and direct in daily power estimation work.
ABSTRAK: Berdasarkan sinaran matahari dan suhu persekitaran per jam, kerja-kerja anggaran kuasa setiap jam dijalankan menggunakan model anggaran kuasa dari dapatan fotovolta konvensional (PVOP) yang digunakan bersempena dengan model anggaran suhu modul fotovolta konvensional (PVMT). Data per jam ini perlu diproses dengan lebih lanjut sebelum ia boleh digunakan pada kerja anggaran kuasa harian. Kerja-kerja penganggaran ini dijalankan menggunakan kaedah penganggaran konvensional, iaitu proses penganggaran berganda yang kompleks, memakan masa dan mudah ralat. Oleh itu, bagi mengelakkan kekurangan ini, satu proses anggaran direka bentuk dan diguna bagi kerja anggaran kuasa harian. Namun, proses ini menghasilkan nilai dapatan kuasa harian yang salah disebabkan oleh nilai suhu modul tidak sah. Oleh itu, model anggaran PVMT baharu telah dibina bagi menyelesaikan masalah nilai tidak sah berdasarkan analisis mudah regresi linear. Prestasi model baharu telah disahkan, memberi nilai Ralat Punca Min Kuasa Dua Ternormal (NRMSE) sebanyak 0.0215 dan nilai Pekali Penentuan (R2) sebanyak 0.9862. Nilai dapatan kuasa harian yang betul dihasilkan dengan nilai suhu modul yang sah, iaitu nilai NRMSE 0.0034 dan R2 0.9999. Dapatan ini menunjukkan bahawa kebolehgunaan model baharu menjadikan proses anggaran lebih tepat, mudah, mesra pengguna, serta-merta dan terus dalam kerja anggaran kuasa harian.
Downloads
Metrics
References
(2013). Solar System Panel Specifications (TSM-190 DC/DA01A) by Trina Solar. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://static.trinasolar.com/sites/default/files/Comax_DC01A_Datasheet_Feb13_EN.pdf. Accessed 3 Jan 2023
Chang K, and Zhang Q (2020). Development of a solar radiation model considering the hourly sunshine duration for all-sky conditions – A case study for Beijing, China. Atmos Environ, 234(February):117617. https://doi.org/10.1016/j.atmosenv.2020.117617 DOI: https://doi.org/10.1016/j.atmosenv.2020.117617
Murat Ates A, and Singh H (2021). Rooftop solar Photovoltaic (PV) plant – One year measured performance and simulations. J King Saud Univ - Sci, 33(3):101361. https://doi.org/10.1016/j.jksus.2021.101361 DOI: https://doi.org/10.1016/j.jksus.2021.101361
Razmjoo A, Shirmohammadi R, Davarpanah A, and Pourfayaz F (2019). Stand-alone hybrid energy systems for remote area power generation. Energy Reports, 5231–241. https://doi.org/10.1016/j.egyr.2019.01.010 DOI: https://doi.org/10.1016/j.egyr.2019.01.010
(2013). Grid-Connected Solar PV Systems: Design Guidelines for Accredited Installers by Clean Energy Council
Skoplaki E, and Palyvos JA (2009). Operating temperature of photovoltaic modules: A survey of pertinent correlations. Renew Energy, 34(1):23–29. https://doi.org/10.1016/j.renene.2008.04.009 DOI: https://doi.org/10.1016/j.renene.2008.04.009
Tamizhmani G, Ji L, Tang Y, Petacci L, and Osterwald C (2003). Photovoltaic Module Thermal/Wind Performance?: Long-Term Monitoring and Model Development For Energy Rating. NCPV Sol Progr Rev Meet, 936–939
Kamuyu WCL, Lim JR, Won CS, and Ahn HK (2018). Prediction model of photovoltaic module temperature for power performance of floating PVs. Energies, 11(2):. https://doi.org/10.3390/en11020447 DOI: https://doi.org/10.3390/en11020447
Ibrahim S, Daut I, Irwan YM, Irwanto M, Gomesh N, and Razliana ARN (2012). An estimation of solar radiation using robust linear regression method. Energy Procedia, 181413–1420. https://doi.org/10.1016/j.egypro.2012.05.157 DOI: https://doi.org/10.1016/j.egypro.2012.05.157
Alam MS, Alouani AT, and Azeem MF (2015). Efficient prediction of maximum PV module output power through dynamic modeling. Sustain Energy Technol Assessments, 1127–35. https://doi.org/10.1016/j.seta.2015.06.001 DOI: https://doi.org/10.1016/j.seta.2015.06.001
Li Y, Wang Y, Qian H, Gao W, Fukuda H, and Zhou W (2023). Hourly global solar radiation prediction based on seasonal and stochastic feature. Heliyon, 9(9):e19823. https://doi.org/10.1016/j.heliyon.2023.e19823 DOI: https://doi.org/10.1016/j.heliyon.2023.e19823
Cetina-Quiñones AJ, Santamaria-Bonfil G, Medina-Esquivel RA, and Bassam A (2023). Techno-economic analysis of an indirect solar dryer with thermal energy storage: An approach with machine learning algorithms for decision making. Therm Sci Eng Prog, 45(August):102131. https://doi.org/10.1016/j.tsep.2023.102131 DOI: https://doi.org/10.1016/j.tsep.2023.102131
Almaktar MA, Mahmoud HY, Daoud EY, and Hasan ZR (2017). Meteorological Parameters in Malaysia: An Investigation Between Real Measurements and NASA Database Drive train of wind turbine View project. AEEESJ-Advanced Electr Electron Eng Sci J Copyr AEEESJ-@, (1):1
(2021). NASA POWER: Data Processing. In: Version 1.0, Last Modif. 23 Nov. https://power.larc.nasa.gov/docs/methodology/data/processing/. Accessed 3 Jan 2023
Mellit A, and Pavan AM (2010). A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy. Sol Energy, 84(5):807–821. https://doi.org/10.1016/j.solener.2010.02.006 DOI: https://doi.org/10.1016/j.solener.2010.02.006
S. Wilcox and W. Marion (2008). Users Manual for TMY3 Data Sets DOI: https://doi.org/10.2172/928611
Zhao P, Xu W, Zhang S, Wang J, and Dai Y (2020). Technical feasibility assessment of a standalone photovoltaic/wind/adiabatic compressed air energy storage based hybrid energy supply system for rural mobile base station. Energy Convers Manag, 206(July 2019):112486. https://doi.org/10.1016/j.enconman.2020.112486 DOI: https://doi.org/10.1016/j.enconman.2020.112486
Alshawaf M, Poudineh R, and Alhajeri NS (2020). Solar PV in Kuwait: The effect of ambient temperature and sandstorms on output variability and uncertainty. Renew Sustain Energy Rev, 134(August):110346. https://doi.org/10.1016/j.rser.2020.110346 DOI: https://doi.org/10.1016/j.rser.2020.110346
Mayer MJ, and Gróf G (2021). Extensive comparison of physical models for photovoltaic power forecasting. Appl Energy, 283(October 2020): https://doi.org/10.1016/j.apenergy.2020.116239 DOI: https://doi.org/10.1016/j.apenergy.2020.116239
Al-Dahidi S, Al-Nazer S, Ayadi O, Shawish S, and Omran N (2020). Analysis of the effects of cell temperature on the predictability of the solar photovoltaic power production. Int J Energy Econ Policy, 10(5):208–219. https://doi.org/10.32479/ijeep.9533 DOI: https://doi.org/10.32479/ijeep.9533
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.