THE EFFECT OF INDUSTRIAL AND WASTE FIBERS ON CONCRETE STRENGTH AND STRUCTURAL BEHAVIOR OF RC SHORT COLUMNS

Authors

DOI:

https://doi.org/10.31436/iiumej.v25i1.2847

Keywords:

Industrial and waste fibers, RC Columns, Mechanical properties, Structural behavior

Abstract

Concrete is a brittle substance; thus, it is reinforced with rebars and fibers to enhance its ductility. On the other hand, the presence of waste from various industries negatively impacts the environment. The ongoing reconstruction in Iraq has resulted in an abundance of locally produced rebar-connecting wire (RCW) and copper electric wire (CEW) waste. To minimize the environmental impact of these wastes, they can be reused in other industries, such as the concrete industry. Few studies have dealt with concrete's structural and mechanical properties containing these local residues. Therefore, this study included an experimental investigation of concrete columns with and without various types of industrial and waste fibers. Two types of industrial fibers (macro hooked-end; CH, and micro straight; CS) steel fibers and two types of waste fibers (RCW and CEW) were utilized. Six reinforced concrete (RC) columns (150 × 150 × 450 mm3) were cast: one control column without fibers and five columns with fibers. The fiber content within the columns was fixed at 0.75% of the concrete volume. The cracks pattern, load-deflection behavior and concrete strain for RC columns were investigated. Moreover, the mechanical properties in terms of compressive, splitting tensile, and flexural strengths tests were also conducted. The results revealed that all types of fibers used improved the mechanical and structural properties of the concrete. Moreover, although the hybrid synthetic fibers gave the best improvement compared to the reference sample, the waste fibers (especially RCW) showed a significant improvement that reached 30.91% in relation to the ultimate load and (10.1, 10.8 and 14.4%) in relation to the compressive, tensile, and flexural strengths respectively.

ABSTRAK:  Konkrit adalah material rapuh; oleh itu ianya dikuatkan dengan besi dan fiber bagi menguatkan kekuatannya. Dalam masa sama, kehadiran bahan buangan dalam pelbagai industri memberi kesan negatif kepada persekitaran. Penstrukturan semula Iraq yang sedang berlangsung memberi kesan kepada kebanjiran bahan buangan seperti besi penghubung litar (RCW) dan litar elektrik tembaga (CEW) buatan tempatan. Bagi mengurangkan kesan pencemaran terhadap alam sekitar, bahan-bahan ini boleh diguna balik dalam industri berbeza, seperti industri konkrit. Terdapat banyak kajian terhadap buangan tempatan yang melibatkan struktur bahan konkrit dan sifat mekanikal.  Oleh itu, kajian ini merupakan kajian eksperimen pasak konkrit dengan atau tanpa pelbagai jenis industri dan fiber buangan. Dua jenis fiber industri iaitu fiber besi (mikro hujung-penyangkut; CH dan mikro lurus; CS) dan dua jenis fiber buangan (RCW dan CEW) dipakai. Enam RC pasak konkrit (150 × 150 × 450 mm3) dihasilkan: satu pasak kawalan tanpa fiber dan lima pasak dengan fiber. Kandungan fiber dalam pasak di tetapkan pada 0.75% isipadu konkrit. Corak rekahan, ciri-ciri kesan beban dan tekanan konkrit pada pasak RC dikaji. Tambahan, kajian terhadap ciri-ciri mekanikal berdasarkan tekanan, rekahan tensil dan kekuatan anjalan telah dijalankan. Dapatan kajian menunjukkan kesemua fiber yang digunakan menambah baik ciri-ciri mekanikal dan struktur konkrit. Tambahan lagi, walaupun fiber sintetik hibrid menunjukkan paling baik berbanding sampel contoh, fiber buangan (terutama RCW) menunjukkan pembaharuan ketara mencapai 30.91% berbanding beban maksimum dan masing-masing menunjukkan 10.1, 10.8 dan 14.4% pada tekanan, rekahan tensil dan kekuatan anjalan.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Nasr MS, Hussain TH, Najim WN. (2018) Properties of Cement Mortar Containing Biomass Bottom Ash and Sanitary Ceramic Wastes as a Partial Replacement of Cement. International Journal of Civil Engineering and Technology (IJCIET), 9(10): 153-165.

Tokoda A, Chagweda F. (2020) Formulation Of Fiber Reinforced Concrete. Abou Bekr Belkaid University - Tlemcen, Algeria

Khan K, Ahmad W, Amin MN et al. (2022) Compressive Strength Estimation of Steel-Fiber-Reinforced Concrete and Raw Material Interactions Using Advanced Algorithms. Polymers, 14(15): 3065. DOI: https://doi.org/10.3390/polym14153065

Cao M, Khan M. (2021) Effectiveness of multiscale hybrid fiber reinforced cementitious composites under single degree of freedom hydraulic shaking table. Structural Concrete, 22(1): 535-549. DOI: https://doi.org/10.1002/suco.201900228

Hadi MNS. (2007) Using fibres to enhance the properties of concrete columns. Construction and Building Materials, 21(1): 118-125. DOI: https://doi.org/10.1016/j.conbuildmat.2005.06.028

Smarzewski P. (2019) Analysis of failure mechanics in hybrid fibre-reinforced high-performance concrete deep beams with and without openings. Materials, 12(1): 101. DOI: https://doi.org/10.3390/ma12010101

Abdulridha SQ, Nasr MS, Al-Abbas BH, Hasan ZA. (2022) Mechanical and structural properties of waste rope fibers-based concrete: An experimental study. Case Studies in Construction Materials, 16e00964. DOI: https://doi.org/10.1016/j.cscm.2022.e00964

Rivera JE, Eid R, Paultre P. (2021) Influence of synthetic fibers on the seismic behavior of reinforced-concrete circular columns. Engineering Structures, 228111493.

doi: https://doi.org/10.1016/j.engstruct.2020.111493. DOI: https://doi.org/10.1016/j.engstruct.2020.111493

Hadi MNS. (2009) Reinforcing concrete columns with steel fibres. Asian Journal of Civil Engineering, 10(1): 79-95.

Ikponmwosa EE, Salau MA. (2011) Effect of short steel fibre reinforcement on laterized concrete columns. Journal of Sustainable Development, 4(1): 230. DOI: https://doi.org/10.5539/jsd.v4n1p230

Al-Shamma YM. (2011) Strength and Ductility of Confined Steel Fiber Reinforced Concrete Short Columns. MSc. Struct. Eng. Al-Mustansiriya Univ. Baghdad 113

Mahdi ZR. (2012) Behavior of fiber reinforced high performance concrete columns. Sc Thesis Univ. Technol. Baghdad Iraq

Balanji EKZ, Sheikh MN, Hadi MNS. (2016) Performance of high strength concrete columns reinforced with hybrid steel fiber under different loading conditions. DOI: https://doi.org/10.14455/ISEC.res.2016.83

Domski J, Katzer J, Zakrzewski M, Ponikiewski T. (2017) Comparison of the mechanical characteristics of engineered and waste steel fiber used as reinforcement for concrete. Journal of Cleaner Production, 15818-28. doi: https://doi.org/10.1016/j.jclepro.2017.04.165. DOI: https://doi.org/10.1016/j.jclepro.2017.04.165

Samarakoon SMSMK, Ruben P, Wie Pedersen J, Evangelista L. (2019) Mechanical performance of concrete made of steel fibers from tire waste. Case Studies in Construction Materials, 11e00259. doi: https://doi.org/10.1016/j.cscm.2019.e00259. DOI: https://doi.org/10.1016/j.cscm.2019.e00259

Sofi A, Gopu GN. (2019) Influence of steel fibre, electrical waste copper wire fibre and electrical waste glass fibre on mechanical properties of concrete. In: IOP Conf. Ser. Mater. Sci. Eng. IOP Publishing. p 12023. DOI: https://doi.org/10.1088/1757-899X/513/1/012023

Soulioti D V, Barkoula NM, Paipetis A, Matikas TE. (2011) Effects of fibre geometry and volume fraction on the flexural behaviour of steel?fibre reinforced concrete. Strain, 47e535–e541. DOI: https://doi.org/10.1111/j.1475-1305.2009.00652.x

Gao D, Li W, Pang Y, Huang Y. (2021) Behavior analysis and strength prediction of steel fiber reinforced recycled aggregate concrete column under axial compression. Construction and Building Materials, 290123278. doi: https://doi.org/10.1016/j.conbuildmat.2021.123278. DOI: https://doi.org/10.1016/j.conbuildmat.2021.123278

Atea RS. (2019) A Case Study On Concrete Column Strength Improvement with Different steel fibers and polypropylene fibers. Journal of Materials Research and Technology, 8(6): 6106-6114. doi: https://doi.org/10.1016/j.jmrt.2019.10.005. DOI: https://doi.org/10.1016/j.jmrt.2019.10.005

BS EN 197-1. (2011) Cement, Composition, Specifications and Conformity Criteria for Common Cements. London, England: British, British Standards Institution-BSI and CEN European Committee for Standardization.

Iraqi Standard No.45. (1984) Aggregate from Natural Sources for Concrete and Building Construction. Central Organization for Standardization and Quality Control, Baghdad, Iraq.

ASTM C494/C494M, ASTM 494/C 494M. (2013) Standard Specification for Chemical Admixtures for Concrete. ASTM International, West Conshohocken, PA.

ASTM A615. (2009) Standard specification for deformed and plain carbon-steel bars for concrete reinforcement. ASTM International, West Conshohocken, PA.

ACI 363R. (2010) Report on High-Strength Concrete.

BS 1881: Part 116. (2003) Method for determination of compressive strength of concrete cubes. British Standards Institution, UK.

ASTM C496. (2011) Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken, PA.

ASTM C78. (2015) Standard test method for flexural strength of concrete (using simple beam with third-point loading). ASTM International, West Conshohocken, PA.

Abbass W, Khan MI, Mourad S. (2018) Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete. Construction and building materials, 168556-569. DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.164

Mohammad SA, Krishna TNC, Saketh T, Ganesh CY, Sathyan D. (2022) Fresh and hardened state properties of waste tire fiber and steel fiber reinforced concrete. Materials Today: Proceedings, 80: 443–448. DOI: https://doi.org/10.1016/j.matpr.2022.10.195

Dawood ET, Ramli M. (2011) High strength characteristics of cement mortar reinforced with hybrid fibres. Construction and building materials, 25(5): 2240-2247. DOI: https://doi.org/10.1016/j.conbuildmat.2010.11.008

Khabaz A. (2016) Monitoring of impact of hooked ends on mechanical behavior of steel fiber in concrete. Construction and Building Materials, 113857-863. DOI: https://doi.org/10.1016/j.conbuildmat.2016.03.142

Ramkumar KB, PR KR. (2022) Impact of hybrid steel fibres on fresh and mechanical properties of Self-compacting concrete. Case Studies in Construction Materials, 17e01274. DOI: https://doi.org/10.1016/j.cscm.2022.e01274

Sengul O. (2018) Mechanical properties of slurry infiltrated fiber concrete produced with waste steel fibers. Construction and Building Materials, 1861082-1091. DOI: https://doi.org/10.1016/j.conbuildmat.2018.08.042

Bhargava P, Sharma UK, Kaushik SK. (2006) Compressive stress-strain behavior of small scale steel fibre reinforced high strength concrete cylinders. Journal of advanced concrete technology, 4(1): 109–121. DOI: https://doi.org/10.3151/jact.4.109

Tokgoz S, Dundar C. (2010) Experimental study on steel tubular columns in-filled with plain and steel fiber reinforced concrete. Thin-Walled Structures, 48(6): 414-422.

doi: https://doi.org/10.1016/j.tws.2010.01.009. DOI: https://doi.org/10.1016/j.tws.2010.01.009

Dhanapal J, Jeyaprakash S. (2020) Mechanical properties of mixed steel fiber reinforced concrete with the combination of micro and macro steel fibers. Structural Concrete, 21(1): 458-467. DOI: https://doi.org/10.1002/suco.201700219

Naser MH, Naser FH, Dhahir MK. (2020) Tensile behavior of fiber reinforced cement mortar using wastes of electrical connections wires and galvanized binding wires. Construction and Building Materials, 264120244. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120244

Downloads

Published

2024-01-01

How to Cite

Naser , M., Falah, M., Naser, F., Nasr, M., Hashim, T., & Shubbar, A. (2024). THE EFFECT OF INDUSTRIAL AND WASTE FIBERS ON CONCRETE STRENGTH AND STRUCTURAL BEHAVIOR OF RC SHORT COLUMNS. IIUM Engineering Journal, 25(1), 87–101. https://doi.org/10.31436/iiumej.v25i1.2847

Issue

Section

Civil and Environmental Engineering