INFLUENCE OF CURING CONDITIONS ON THE EARLY STRENGTH OF LOW TEMPERATURE BELITE CEMENTS

Authors

DOI:

https://doi.org/10.31436/iiumej.v25i1.2829

Keywords:

Belite cements, Dicalcium silicate, Thermal curing, Transport properties, Porosity

Abstract

Low temperature belite cements are produced using techniques that stabilize the more reactive high temperature polymorphs of dicalcium silicate (C2S) to improve early strength, but the effect of curing conditions on them is not well studied. The focus of this work is to assess the improvement of their early strength in different curing conditions. During the synthesis of the cements at 1000 ºC, the more reactive polymorphs, -C2S and ?-C2S, were stabilized using gypsum and hydrothermal treatment with potassium hydroxide. The phase composition of the synthesized cements was analysed using X-ray powder diffraction. The morphology and elemental composition of the C2S crystals and hydrated pastes was determined using a scanning electron microscope equipped with an energy-dispersive X-ray system. Mortar samples were cured in different conditions that include hot air and hot water curing at 60 ºC and 90 ºC. The 28-day strength development, capillary water porosity, water absorption, and ultrasonic pulse velocity were tested. The formation of hydration products and strength was dependent on the type of C2S polymorph. Curing at elevated temperatures improved the transport properties of mortars. Samples cured at 90 ºC in hot air obtained the highest early strength. The presence of -C2S and elevated curing temperatures significantly improve the early strength of the mortar samples.

ABSTRAK:  Simen belite suhu rendah dihasilkan melalui teknik menstabilkan reaktif polimof dikalsium silikat (C2S) bersuhu tinggi bagi meningkatkan kekuatan awal, tetapi kesan keadaan pengawetan ke atasnya tidak dikaji dengan baik. Fokus kerja ini adalah bagi menilai peningkatan kekuatan awal pada keadaan pengawetan berbeza. Sintesis simen pada suhu 1000 ºC, iaitu pada polimof lebih reaktif, -C2S dan ?-C2S, telah distabilkan menggunakan rawatan gipsum dan hidroterma dengan kalium hidroksida. Fasa komposisi simen tersintesis dianalisa menggunakan pembelauan serbuk sinar-X. Komposisi morfologi dan unsur kristal C2S dan pes terhidrat ditentukan menggunakan pengimbas mikroskop elektron yang dilengkapi sistem sinar-X penyebar tenaga. Sampel mortar telah diawetkan dalam keadaan berbeza termasuk pengawetan udara panas dan air panas pada suhu 60 ºC dan 90 ºC. Perkembangan kekuatan keliangan kapilari air, penyerapan air, dan halaju nadi ultrasonik telah diuji pada hari ke 28. Pembentukan produk penghidratan dan kekuatan adalah bergantung kepada jenis polimof C2S. Pengawetan pada suhu tinggi meningkatkan sifat pengangkutan mortar. Sampel yang diawet pada 90 ºC dalam udara panas memperoleh kekuatan awal tertinggi. Kehadiran -C2S dan suhu pengawetan tinggi dengan ketara meningkatkan kekuatan awal sampel mortar.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Garside M. (2021) Cement production worldwide from 1995 to 2020. Available: [https://www.statista.com/statistics/1087115/global-cement-production-volume/].

Cuesta A, Ayuela A, Aranda MAG. (2021) Belite cements and their activation. Cement and Concrete Research, 140: 106319. https://doi.org/10.1016/j.cemconres.2020.106319 DOI: https://doi.org/10.1016/j.cemconres.2020.106319

Alsop PA. (2019) The cement plant operations handbook for dry-process plants. Surrey, Tradeship Publications Ltd.

Harrison T, Jones MR, Lawrence D. (2019) 8 - The Production of Low Energy Cements. In Lea's Chemistry of Cement and Concrete. 5th edition. Edited by Hewlett PC, Liska M. Oxford, Butterworth-Heinemann: pp 341-361. DOI: https://doi.org/10.1016/B978-0-08-100773-0.00008-3

International Energy Agency. (2021) Cement. Available [https://www.iea.org/reports/cement].

Gawlicki M. (2020) Belite in cements with low emission of CO2 during clinker formation. Cement Wapno Beton, 25(5): 348-357. doi.org/10.32047/CWB.2020.25.5.1 DOI: https://doi.org/10.32047/CWB.2020.25.5.1

Popescu CD, Muntean M, Sharp JH. (2003) Industrial trial production of low energy belite cement. Cement and Concrete Composites, 25(7): 689-693. https://doi.org/10.1016/S0958-9465(02)00097-5 DOI: https://doi.org/10.1016/S0958-9465(02)00097-5

Kacimi L, Cyr M, Clastres P. (2010) Synthesis of ??L-C2S cement from fly-ash using the hydrothermal method at low temperature and atmospheric pressure. Journal of Hazardous Materials, 181(1): 593-601. https://doi.org/10.1016/j.jhazmat.2010.05.054 DOI: https://doi.org/10.1016/j.jhazmat.2010.05.054

Mazouzi W, Kacimi L, Cyr M, Clastres P. (2014) Properties of low temperature belite cements made from aluminosilicate wastes by hydrothermal method. Cement and Concrete Composites, 53: 170-177. https://doi.org/10.1016/j.cemconcomp.2014.07.001 DOI: https://doi.org/10.1016/j.cemconcomp.2014.07.001

Duvallet TY, Mahmoodabadi M, Oberlink AE, Robl TL, Jewell RB. (2022) Production of ??H-belite-CSA cement at low firing temperatures. Cement and Concrete Composites, 134: 104820. https://doi.org/10.1016/j.cemconcomp.2022.104820 DOI: https://doi.org/10.1016/j.cemconcomp.2022.104820

Moudar J, Agourrame H, El Fami N, Diouri A, Taibi M. (2022) Stabilization and characterization of dicalcium silicate belite phase by metallic zinc. In Proceedings of 3rd International Congress on Materials & Structural Stability. Edited by Diouri A, Sonebi M, Saadi M, Khachani N, Ait Ahsaine H, Material Today: Proceedings: pp 1442-1446. DOI: https://doi.org/10.1016/j.matpr.2022.02.466

Bouzidi MA, Tahakourt A, Bouzidi N, Merabet D. (2014) Synthesis and Characterization of Belite Cement with High Hydraulic Reactivity and Low Environmental Impact. Arabian Journal for Science and Engineering, 39(12): 8659-8668. https://doi.org/10.1007/s13369-014-1471-2 DOI: https://doi.org/10.1007/s13369-014-1471-2

Pimraksa K, Hanjitsuwan S, Chindaprasirt P. (2009) Synthesis of belite cement from lignite fly ash. Ceramics International, 35(6): 2415-2425. https://doi.org/10.1016/j.ceramint.2009.02.006 DOI: https://doi.org/10.1016/j.ceramint.2009.02.006

Kotsay G, Jaskulski R. (2020) Belite cement as an ecological alternative to Portland cement - a review. Materials Structures Technology, 2(1): 70-76. 10.31448/mstj.02.01.2019.70-76

Zhao Y, Lu L, Wang S, Gong C, Huang Y. (2013) Modification of Dicalcium Silicates Phase Composition by BaO, SO3 and MgO. Journal of Inorganic and Organometallic Polymers and Materials, 23(4): 930-936. https://doi.org/10.1007/s10904-013-9873-2 DOI: https://doi.org/10.1007/s10904-013-9873-2

Bye G, Livesey P, Struble L. (2011) Portland Cement. London, ICE Publishing.

Morales-Cantero A, De la Torre AG, Cuesta A, Fraga-Lopez E, Shirani S, Aranda MAG (2020) Belite hydration at high temperature and pressure by in situ synchrotron powder diffraction. Construction and Building Materials, 262: 120825. https://doi.org/10.1016/j.conbuildmat.2020.120825 DOI: https://doi.org/10.1016/j.conbuildmat.2020.120825

Federowicz K, Figueiredo VA, Al-kroom H, Abdel-Gawwad HA, Abd Elrahman M, Sikora P. (2020) The Effects of Temperature Curing on the Strength Development, Transport Properties, and Freeze-Thaw Resistance of Blast Furnace Slag Cement Mortars Modified with Nanosilica. Materials, 13(24): 5800. https://www.mdpi.com/1996-1944/13/24/5800 DOI: https://doi.org/10.3390/ma13245800

Shirani S, Cuesta A, Morales-Cantero A, De la Torre AG, Olbinado MP, Aranda MAG. (2021) Influence of curing temperature on belite cement hydration: A comparative study with Portland cement. Cement and Concrete Research, 147: 106499. https://doi.org/10.1016/j.cemconres.2021.106499 DOI: https://doi.org/10.1016/j.cemconres.2021.106499

Thomas JJ, Ghazizadeh S, Masoero E. (2017) Kinetic mechanisms and activation energies for hydration of standard and highly reactive forms of ?-dicalcium silicate (C2S). Cement and Concrete Research, 100: 322-328. https://doi.org/10.1016/j.cemconres.2017.06.001 DOI: https://doi.org/10.1016/j.cemconres.2017.06.001

Yang Z, Tao X, Wang G, Li W. (2022) Study on Preparation of Low Heat High Belite Clinker from Waste Mortar and Its Modification. Materials, 15: 3196. https://www.mdpi.com/1996-1944/15/9/3196 DOI: https://doi.org/10.3390/ma15093196

British Standard Institution. (2016) BS EN 196-1:2016 Methods of testing cement - Part 1: Determination of strength. London.

British Standard Institution. (2003) BS EN ISO 15148:2002+A1:2016 Hygrothermal performance of building materials and products. Determination of water absorption coefficient by partial immersion. London.

Downloads

Published

2024-01-01

How to Cite

Haliru, S. G., & Zawawi, R. (2024). INFLUENCE OF CURING CONDITIONS ON THE EARLY STRENGTH OF LOW TEMPERATURE BELITE CEMENTS. IIUM Engineering Journal, 25(1), 72–86. https://doi.org/10.31436/iiumej.v25i1.2829

Issue

Section

Civil and Environmental Engineering