THIOL FUNCTIONALIZED GOLD NANOBIPYRAMIDS-BASED PLASMONIC SENSOR FOR GLUCOSE DETECTION

Authors

  • Natasya Salsabiila Universiti Tun Hussein Onn Malaysia https://orcid.org/0009-0001-9772-5010
  • Marlia Morsin Universiti Tun Hussein Onn Malaysia https://orcid.org/0000-0002-5351-7826
  • Muhammad Hanif Hasbullah Universiti Tun Hussein Onn Malaysia
  • Suratun Nafisah Institut Teknologi Sumatera
  • Nur Liyana Razali Universiti Tun Hussein Onn Malaysia
  • Iwantono Universitas Riau

DOI:

https://doi.org/10.31436/iiumej.v25i1.2811

Keywords:

gold nanobipyramids, glucose, plasmonic sensor, thiol

Abstract

Gold nanobipyramids (GNBPs) have high selectivity in detecting changes in their surrounding medium because of their electric field enhancements and larger surface areas. In this study, we functionalized GNBPs using a thiol group that acts as a ligand to improve the detection performance of the analytes. The investigation is carried out by varying the functionalization periods from 12 to 72 hours. The optimum thiol-functionalized GNBPs (t-GNBPs) are obtained in 60 hours, with a length of 36.84 ± 2.05 nm, a width of 24.02 ± 0.74 nm, and an aspect ratio of 1.54 ± 0.11. Then, the optimum t-GNBPs are used as a sensing material in a plasmonic sensor to detect glucose. The limit of detection (LoD) of glucose is 1 µM for this sensor. The plasmonic sensor has been successfully built with reliable performance in detecting glucose with excellent linearity, sensitivity and R2 = 1; good selectivity compared to four similar chemical structure analytes; high stability with a low error value, i.e., ± 0.02 a.u.; and almost consistent repeatability values in each cycle with low percent variance of 0.000025% for the t-SPR area and 0.000032% for the l-SPR area. Therefore, a plasmonic sensor based on t-GNBPs is an alternative method of detecting glucose with high sensitivity, selectivity and repeatability.

ABSTRAK: Nanobipiramid Emas (GNBPs) memiliki selektiviti yang tinggi dalam mengesan perubahan medium sekitar kerana memiliki peningkatan medan elektrik dan luas permukaan yang besar. Kajian ini merupakan fungsionalisasi terhadap GNBPs dengan menggunakan kumpulan thiol sebagai ligan bagi meningkatkan prestasi pengesanan analit. Kajian ini  dilakukan dengan mempelbagaikan tempoh masa fungsionalisasi dalam julat waktu 12 hingga 72 jam. GNBPs optimum yang difungsionalisasi oleh thiol (t-GNBPs) diperoleh pada 60 jam, dengan panjang 36.84 ± 2.05 nm, lebar 24.02 ± 0.74 nm, dan nisbah aspek 1.54 ± 0.11. Kemudian, t-GNBPs optimum digunakan sebagai bahan penderia pada sensor plasmonik bagi mengesan glukosa. Limit pengesanan glukosa (LoD) bagi sensor ini adalah sebanyak 100 µM. Sensor plasmonik telah berhasil dibangunkan dengan kecekapan boleh percaya dalam mengesan glukosa dengan lineariti dan sensitiviti sebanyak R2 = 1. Pemilihan yang baik dibandingkan dengan 4 analit yang sama dari segi struktur kimia. Kestabilan yang tinggi dengan nilai ralat rendah iaitu ± 0.02 a.u, dan memiliki nilai keberulangan yang hampir konsisten pada setiap kitar dengan peratusan varian rendah iaitu sebanyak 0.000025% bagi bahagian t-SPR dan 0.000032% bagi l-SPR. Oleh itu, pengesan plasmonik berdasarkan t-GNBPs ini adalah kaedah alternatif bagi mengesan glukosa dengan sensitiviti, selektiviti, dan kebolehulangan yang tinggi.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Sani A, Cao C, Cui D. (2021) Toxicity of gold nanoparticles (AuNPs): A review. Biochem. Biophys. Reports, 26: 100991. doi: 10.1016/j.bbrep.2021.100991 DOI: https://doi.org/10.1016/j.bbrep.2021.100991

Zhang W, Liu G, Bi J, Bao K, Wang P. (2023) In-situ and ultrasensitive detection of mercury (II) ions (Hg2+) using the localized surface plasmon resonance (LSPR) nanosensor and the microfluidic chip. Sensors Actuators A Phys., 349: 114074. doi: https://doi.org/10.1016/j.sna.2022.114074 DOI: https://doi.org/10.1016/j.sna.2022.114074

Morsin M, Salleh M. M, Umar A. A, Sahdan M. Z. (2017) Gold nanoplates for a localized surface plasmon resonance-based boric acid sensor. Sensors (Switzerland), 17: 1–9. doi: 10.3390/s17050947 DOI: https://doi.org/10.3390/s17050947

Sun L. L, Leo Y. S, Zhou X, Ng W, Wong T. I, Deng J. (2020) Localized surface plasmon resonance based point-of-care system for sepsis diagnosis. Mater. Sci. Energy Technol., 3: 274–281. doi: 10.1016/j.mset.2019.10.007 DOI: https://doi.org/10.1016/j.mset.2019.10.007

Nafisah S, Morsin M, Jumadi N. A, Nayan N, Shah N. S. M, Razali N. L, An'Nisa N. Z. (2020) Improved sensitivity and selectivity of direct localized surface plasmon resonance sensor using gold nanobipyramids for glyphosate detection. IEEE Sens. J., 20: 2378–2389. doi: 10.1109/JSEN.2019.2953928 DOI: https://doi.org/10.1109/JSEN.2019.2953928

Bhardwaj H, Sumana G, Marquette C. A. (2021) Gold nanobipyramids integrated ultrasensitive optical and electrochemical biosensor for Aflatoxin B1 detection. Talanta, 222: 121578. doi: 10.1016/j.talanta.2020.121578 DOI: https://doi.org/10.1016/j.talanta.2020.121578

Cheng J, Wang X, Nie T, Yin L, Wang S, Zhao Y, Wu H, Mei H. (2020) A novel electrochemical sensing platform for detection of dopamine based on gold nanobipyramid/multi-walled carbon nanotube hybrids. Anal. Bioanal. Chem., 412: 2433–2441. doi: 10.1007/s00216-020-02455-5 DOI: https://doi.org/10.1007/s00216-020-02455-5

Oo A. M, Al-abed A. A, Lwin O. M, Kanneppady S. S, Sim T. Y, Mukti N. A, Zahariluddin A. S, Jaffar F. (2020) Type 2 diabetes mellitus prediction in Malaysia using modified diabetes risk assessment tool. Malaysian J. Public Heal. Med., 20: 15–21, doi: 10.37268/mjphm/vol.20/no.1/art.442 DOI: https://doi.org/10.37268/mjphm/vol.20/no.1/art.442

Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala A. A, Ogurtsova K. (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Res. Clin. Pract., 157: 107843. doi: 10.1016/j.diabres.2019.107843 DOI: https://doi.org/10.1016/j.diabres.2019.107843

Ganasegeran K, Hor C. P, Jamil M. F. A, Loh H. C, Noor J. M, Hamid N. A, Suppiah P. D, Manaf M. R. A, Ch'ng A. S. H, Looi I. (2020) A systematic review of the economic burden of type 2 diabetes in Malaysia. Int. J. Environ. Res. Public Health, 17: 1–23. doi: 10.3390/ijerph17165723 DOI: https://doi.org/10.3390/ijerph17165723

Chen J, Yan J, Dou B, Feng Q, Miao X, Wang P. (2021) Aggregatable thiol-functionalized carbon dots-based fluorescence strategy for highly sensitive detection of glucose based on target-initiated catalytic oxidation. Sensors Actuators B Chem., 330: 129325, doi: 10.1016/j.snb.2020.129325 DOI: https://doi.org/10.1016/j.snb.2020.129325

Samanta A, Dhar B. B, Devi R. N. (2012) Novel porous silica encapsulated Au nanoreactors as peroxidase mimic for one-pot glucose detection. New J. Chem., 36: 2625–2629, doi: 10.1039/c2nj40665a DOI: https://doi.org/10.1039/c2nj40665a

Akhtar M. A, Batool R, Hayat A, Han D, Riaz S, Khan S. U, Nasir M, Nawaz M. H, Niu L. (2019) Functionalized graphene oxide bridging between enzyme and au-sputtered screen-printed interface for glucose detection. ACS Appl. Nano Mater., 2: 1589–1596. doi: 10.1021/acsanm.9b00041 DOI: https://doi.org/10.1021/acsanm.9b00041

Chu Z, Liu Y, Xu Y, Shi L, Peng J, Jin W. (2015) In-situ fabrication of well-distributed gold nanocubes on thiol graphene as a third-generation biosensor for ultrasensitive glucose detection. Electrochim. Acta, 176: 162–171. doi: 10.1016/j.electacta.2015.06.123 DOI: https://doi.org/10.1016/j.electacta.2015.06.123

Forlenza G. P, Buckingham B. A, Brown S. A, Bode B. W, Levy C. J, Criego A. B, Wadwa R. P, Cobry E. C, Slover R. J. (2021) First outpatient evaluation of a tubeless automated insulin delivery system with customizable glucose targets in children and adults with type 1 diabetes. Diabetes Technol. Ther., 23: 410–424. doi: 10.1089/dia.2020.0546 DOI: https://doi.org/10.1089/dia.2020.0546

An'Nisa N. Z, Morsin M, Sanudin R, Razali N. L, Nafisah S. (2020) Controlled wet chemical synthesis of gold nanorods for triclopyr butotyl herbicide detection based-plasmonic sensor. Sens. Bio-Sensing Res., 29: 100359. doi: 10.1016/j.sbsr.2020.100359 DOI: https://doi.org/10.1016/j.sbsr.2020.100359

Nafisah S, Morsin M, Sanudin R, Nayan N, Yusop M. Z. M, Razali N. L, Shah N. Z. A. M. (2021) Effect of additive acid on seeded growth of gold nanobipyramids. J. Phys. Chem. Solids, 148: 109764. doi: 10.1016/j.jpcs.2020.109764 DOI: https://doi.org/10.1016/j.jpcs.2020.109764

Shah N. Z. A. M, Morsin M, Sanudin R, Razali N. L, Nafisah S, Soon C. F. (2020) Effects of growth solutions ageing time to the formation of gold nanorods via two-step approach for plasmonic applications. Plasmonics, 15: 923–932. doi: 10.1007/s11468-019-01098-2 DOI: https://doi.org/10.1007/s11468-019-01098-2

Capek I. (2013) Preparation and functionalization of gold nanoparticles. J. Surf. Sci. Technol, 29: 1–18.

Chang Y, Wang L, Li R, Zhang Z, Wang Q, Yang J, Guo C. F, Pan T. (2021) First decade of interfacial iontronic sensing: from droplet sensors to artificial skins. Adv. Mater., 33: 2003464. doi: 10.1002/adma.202003464 DOI: https://doi.org/10.1002/adma.202003464

Lin L, Weng S, Zheng Y, Liu X, Ying S, Chen F, You D. (2020) Bimetallic PtAu alloy nanomaterials for nonenzymatic selective glucose sensing at low potential. J. Electroanal. Chem., 865: 114147. doi: 10.1016/j.jelechem.2020.114147 DOI: https://doi.org/10.1016/j.jelechem.2020.114147

Downloads

Published

2024-01-01

How to Cite

Salsabiila, N., Morsin, M., Hasbullah, M. H., Nafisah, S., Razali, N. L., & Iwantono. (2024). THIOL FUNCTIONALIZED GOLD NANOBIPYRAMIDS-BASED PLASMONIC SENSOR FOR GLUCOSE DETECTION . IIUM Engineering Journal, 25(1), 274–290. https://doi.org/10.31436/iiumej.v25i1.2811

Issue

Section

Materials and Manufacturing Engineering

Funding data