ENHANCING SUSTAINABILITY INDEX PARAMETER USING ANFIS COMPUTATIONAL INTELLIGENCE MODEL

Authors

DOI:

https://doi.org/10.31436/iiumej.v24i2.2810

Keywords:

Environmental Health, Ecosystems, Urban development, Environmental sustainability., Computational Intelligence, ANFIS

Abstract

The scarcity of water resource is an essential global issue in the 21st century. Therefore, one of the Sustainable Development Goals (SDG) was to ensure the availability and sustainable management of water and sanitation. To do this, it is necessary to assess whether or not the SDG has been followed using the sustainability index. However, there are a lot of sustainability indexes and many of them have the same problem, in which all sustainability index parameters have the same weightage. This problem shows us that every parameter in the sustainability index is equal, while in real life there is no equal parameter. In this paper a weightage for each parameter is proposed to enhance the sustainability index. The method to assess the sustainability index parameters was using a questionnaire by key experts in the water industry. Using ANFIS computational intelligence, the result of the assessment was then fit to the frequent parameters that exist in other sustainability indexes. This proposed method can produce a ranking and weight for each sustainability index parameter and criteria. Using this method, the weightage for each sustainability index parameter can be generated, such as environmental 0.301, engineering 0.214, economic 0.280, and social 0.205.

ABSTRAK: Kekurangan sumber air merupakan isu global yang penting dalam abad ke-21. Oleh itu, salah satu Matlamat Pembangunan Mampan (SDG) adalah bagi memastikan ketersediaan dan pengurusan air dan sanitasi yang berterusan. Bagi melaksanakan ini, adalah perlu untuk menilai sama ada SDG telah diikuti atau tidak menggunakan indeks kemampanan. Walau bagaimanapun, terdapat banyak indeks kemampanan dan kebanyakannya mempunyai masalah yang sama, di mana semua parameter indeks kemampanan mempunyai pemberat yang sama. Masalah ini menunjukkan kepada kita bahawa setiap parameter indeks kemampanan adalah sama, manakala dalam kehidupan sebenar tiada parameter yang sama. Kajian ini merupakan cadangan wajaran pemberat bagi setiap parameter bagi meningkatkan indeks kemampanan. Kaedah bagi menilai parameter indeks kemampanan adalah menggunakan soal selidik oleh pakar utama dalam industri air. Menggunakan kecerdasan pengiraan ANFIS, hasil penilaian kemudiannya diselaraskan dengan parameter kerap yang wujud dalam indeks kemampanan lain. Kaedah yang dicadangkan ini boleh menghasilkan pemeringkatan dan pemberat bagi setiap parameter dan kriteria indeks kemampanan. Menggunakan kaedah ini, wajaran pemberat bagi setiap parameter indeks kemampanan dapat dijana, seperti persekitaran 0.301, kejuruteraan 0.214, ekonomi 0.280, dan sosial 0.205.

ABSTRAK: Kekurangan sumber air merupakan isu global yang penting dalam abad ke-21. Oleh itu, salah satu Matlamat Pembangunan Mampan (SDG) adalah bagi memastikan ketersediaan dan pengurusan air dan sanitasi yang berterusan. Bagi melaksanakan ini, adalah perlu untuk menilai sama ada SDG telah diikuti atau tidak menggunakan indeks kemampanan. Walau bagaimanapun, terdapat banyak indeks kemampanan dan kebanyakannya mempunyai masalah yang sama, di mana semua parameter indeks kemampanan mempunyai pemberat yang sama. Masalah ini menunjukkan kepada kita bahawa setiap parameter indeks kemampanan adalah sama, manakala dalam kehidupan sebenar tiada parameter yang sama. Kajian ini merupakan cadangan wajaran pemberat bagi setiap parameter bagi meningkatkan indeks kemampanan. Kaedah bagi menilai parameter indeks kemampanan adalah menggunakan soal selidik oleh pakar utama dalam industri air. Menggunakan kecerdasan pengiraan ANFIS, hasil penilaian kemudiannya diselaraskan dengan parameter kerap yang wujud dalam indeks kemampanan lain. Kaedah yang dicadangkan ini boleh menghasilkan pemeringkatan dan pemberat bagi setiap parameter dan kriteria indeks kemampanan. Menggunakan kaedah ini, wajaran pemberat bagi setiap parameter indeks kemampanan dapat dijana, seperti persekitaran 0.301, kejuruteraan 0.214, ekonomi 0.280, dan sosial 0.205.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

World Bank Poverty & Equity Brief East Asia & Pacific – Indonesia [https://databankfiles.worldbank.org/public/ddpext_download/poverty/987B9C90-CB9F-4D93-AE8C-750588BF00QA/current/Global_POVEQ_IDN.pdf]

Badan Pusat Statistik Provinsi Banten Proyeksi Penduduk Provinsi Banten 2010-2020 [https://banten.bps.go.id/publication/2015/03/31/a723ef5e69db53cfc3eca058/proyeksi-penduduk-provinsi-banten-2010-2020.html]

E. Iglesias and M. Blanco (2008). New directions in water resources management: The role of water pricing policies. Water Resour Res, 44. doi: 10.1029/2006WR005708. DOI: https://doi.org/10.1029/2006WR005708

Q. Tang (2020). Global change hydrology: Terrestrial water cycle and global change. Sci China Earth Sci, 63:459–462. doi: 10.1007/s11430-019-9559-9. DOI: https://doi.org/10.1007/s11430-019-9559-9

N. W. Arnell (1999). Climate change and global water resources, Global Environmental Change, 9:S31-S49. doi: 10.1016/S0959-3780(99)00017-5. DOI: https://doi.org/10.1016/S0959-3780(99)00017-5

E. Marris (2016). Water scarcity’ affects four billion people each year, Nature. doi: 10.1038/nature.2016.19370. DOI: https://doi.org/10.1038/nature.2016.19370

Climate Change Adaptation vs Mitigation?: A Fiscal Perspective [https://www.lse.ac.uk/granthaminstitute/wp-content/uploads/2015/03/Barrage_2015_ Adaptation_Mitigation_Fiscal.pdf]

D. S. Brookshire and D. Whittington (1993). Water resources issues in the developing countries. Water Resour Res., 29:1883-1888, doi: 10.1029/92WR02988. DOI: https://doi.org/10.1029/92WR02988

United Nations The sustainable development goals report 2019 [https://unstats.un.org/sdgs/report/2019/The-Sustainable-Development-Goals-Report-2019.pdf]

M. Maiolo and D. Pantusa (2019). Sustainable water management index, swam_index. Cogent Eng., 6, doi: 10.1080/23311916.2019.1603817. DOI: https://doi.org/10.1080/23311916.2019.1603817

The Canadian Water Sustainability Index (CWSI): Case Study Report [http://www.bibliotheque.assnat.qc.ca/01/MONO/2006/03/842674.pdf]

I. Juwana, B. J. C. Perera, and N. Muttil (2010). A water sustainability index for West Java. Part 1: Developing the conceptual framework. Water Science and Technology, 62:1629–1640. doi: 10.2166/wst.2010.452. DOI: https://doi.org/10.2166/wst.2010.452

I. Juwana, B. J. C. Perera, and N. Muttil (2010). A water sustainability index for West Java. Part 1: Developing the conceptual framework. Water Science and Technology, 62: 1641–1652. doi: 10.2166/wst.2010.453. DOI: https://doi.org/10.2166/wst.2010.453

G. P. N. Hakim et al. (2023). Levenberg Marquardt artificial neural network model for self-organising networks implementation in wireless sensor network. IET Wireless Sensor Systems, 1–14. doi: 10.1049/wss2.12052. DOI: https://doi.org/10.1049/wss2.12052

S. R. Utama, A. Firdausi, and G. P. N. Hakim (2022). Control and Monitoring Automatic Floodgate Based on NodeMCU and IOT with Fuzzy Logic Testing. Journal of Robotics and Control (JRC), 3:14-17. doi: 10.18196/jrc.v3i1.11199. DOI: https://doi.org/10.18196/jrc.v3i1.11199

A. Adriansyah, Y. Gunardi, B. Badaruddin, and E. Ihsanto (2015). Goal-seeking Behavior-based Mobile Robot Using Particle Swarm Fuzzy Controller. TELKOMNIKA, 13:528-538. doi: 10.12928/telkomnika.v13i2.1111. DOI: https://doi.org/10.12928/telkomnika.v13i2.1111

J. S. R. Jang (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans Syst Man Cybern., 23:665–685. doi: 10.1109/21.256541.

H. A. O. Cruz, R. N. A. Nascimento, J. P. L. Araujo, E. G. Pelaes, and G. P. S. Cavalcante (2017). Methodologies for path loss prediction in LTE-1.8 GHz networks using neuro-fuzzy and ANN. In SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference: 27-30 August 2017; Brazil. Edited by Aguas de Lindoia. DOI: https://doi.org/10.1109/IMOC.2017.8121127

L. A. Zadeh (1975). The Concept of a Linguistic Variable and its Application to Approximate Reasoning. Inf Sci (N Y), 8:199–249. doi:10.1016/0020-0255(75)90036-5. DOI: https://doi.org/10.1016/0020-0255(75)90036-5

N. Yusof, N. Bahiah, Mohd. Shahizan, and Y. Chun, “A Concise Fuzzy Rule Base to Reason Student Performance Based on Rough-Fuzzy Approach,” in Fuzzy Inference System - Theory and Applications, 2012. doi: 10.5772/37773. DOI: https://doi.org/10.5772/37773

G. P. N. Hakim, D. Septiyana, and S. Iswanto (2022). Survey Paper Artificial and Computational Intelligence in the Internet of Things and Wireless Sensor Network. Journal of Robotics and Control (JRC), 3:439–454. doi: 10.18196/jrc.v3i4.15539.

I. R. F. Arif, A. Firdausi, and G. P. N. Hakim (2021). Nebulizer operational time control based on drug volume and droplet size using fuzzy sugeno method. Journal of Robotics and Control (JRC) 2:94-97. doi: 10.18196/jrc.2259. DOI: https://doi.org/10.18196/jrc.2259

G. P. N. Hakim, R. Muwardi, M. Yunita, and D. Septiyana (2022). Fuzzy Mamdani performance water chiller control optimization using fuzzy adaptive neuro fuzzy inference system assisted. Indonesian Journal of Electrical Engineering and Computer Science, 28: 1388~1395. doi: 10.11591/ijeecs.v28.i3. DOI: https://doi.org/10.11591/ijeecs.v28.i3.pp1388-1395

G. P. N. Hakim, D. Septiyana, and S. Iswanto (2022). Survey Paper Artificial and Computational Intelligence in the Internet of Things and Wireless Sensor Network. Journal of Robotics and Control (JRC), 3:439–454. doi: 10.18196/jrc.v3i4.15539. DOI: https://doi.org/10.18196/jrc.v3i4.15539

D. Sahid and M. Alaydrus. (2020) Multi Sensor Fire Detection in Low Voltage Electrical Panel Using Modular Fuzzy Logic. In 2nd International Conference on Broadband Communications, Wireless Sensors and Powering on 28-30 September; Jakarta. pp 31-35. DOI: https://doi.org/10.1109/BCWSP50066.2020.9249400

G. P. N. Hakim et al. (2022). Near Ground Pathloss Propagation Model Using Adaptive Neuro Fuzzy Inference System for Wireless Sensor Network Communication in Forest, Jungle, and Open Dirt Road Environments. Sensors, 22:3266-3288 doi: 10.3390/s22093267. DOI: https://doi.org/10.3390/s22093267

T. Takagi and M. Sugeno (1985). Fuzzy Identification of Systems and Its Applications to Modeling and Control. IEEE Trans Syst Man Cybern, 15:116-132. doi: 10.1109/TSMC.1985.6313399. DOI: https://doi.org/10.1109/TSMC.1985.6313399

C. H. Chiu and Y. F. Peng (2019). Design of Takagi-Sugeno fuzzy control scheme for real world system control. Sustainability, 11. doi: 10.3390/su11143855. DOI: https://doi.org/10.3390/su11143855

X. Tang, D. Ning, H. Du, W. Li, and W. Wen (2020). Takagi-Sugeno Fuzzy Model-Based Semi-Active Control for the Seat Suspension with an Electrorheological Damper. IEEE Access, 8: 98027-98037. doi: 10.1109/ACCESS.2020.2995214. DOI: https://doi.org/10.1109/ACCESS.2020.2995214

X. Tang, D. Ning, H. Du, W. Li, Y. Gao, and W. Wen (2020). A takagi-sugeno fuzzy model-based control strategy for variable stiffness and variable damping suspension. IEEE Access, 8: 71628-71641. doi: 10.1109/ACCESS.2020.2983998. DOI: https://doi.org/10.1109/ACCESS.2020.2983998

J. S. R. Jang (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans Syst Man Cybern, 23:665–685. doi: 10.1109/21.256541. DOI: https://doi.org/10.1109/21.256541

J.-S. R. Jang, C.-T. Sun, and E. Mizutani (1997) Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence, Prentice Hall. DOI: https://doi.org/10.1109/TAC.1997.633847

K. Carden and N. P. Armitage (2013). Assessing urban water sustainability in South Africa - Not just performance measurement. Water SA, 39. doi: 10.4314/wsa.v39i3.1. DOI: https://doi.org/10.4314/wsa.v39i3.1

Z. Chen, H. H. Ngo, and W. Guo (2012). A critical review on sustainability assessment of recycled water schemes. Science of the Total Environment, 426:13-31. doi: 10.1016/j.scitotenv.2012.03.055. DOI: https://doi.org/10.1016/j.scitotenv.2012.03.055

Sustainability indicators and the assessment of Urban Water Systems: Seeking for a robust way forward [http://www.switchurbanwater.eu/outputs/pdfs/WP1-1_PAP_Sustainability _indicators_for_assessment_of_UWS.pdf]

Evaluation of Sustainability index for Urban Water Management System [http://www.ipcbee.com/vol4/58-ICESD2011D30014.pdf]

T. Al-Washali, S. Sharma, F. Al-Nozaily, M. Haidera, and M. Kennedy (2019). Monitoring nonrevenue water performance in intermittent supply. Water, 11. doi: 10.3390/w11061220. DOI: https://doi.org/10.3390/w11061220

L. J. N. Jones, D. Kong, B. T. Tan, and P. Rassiah (2021). Non-revenue water in Malaysia: Influence of water distribution pipe types. Sustainability, 13. doi: 10.3390/su13042310. DOI: https://doi.org/10.3390/su13042310

M. Farley and S. Trow (2003) Losses in water distribution networks: A practitioner’s guide to assessment, London, IWA Publishing.

A. Adham, S. Seeyan, R. Abed, K. Mahdi, M. Riksen, and C. Ritsema (2022). Sustainability of the Al-Abila Dam in the Western Desert of Iraq. Water, 14. doi: 10.3390/w14040586. DOI: https://doi.org/10.3390/w14040586

The Canadian Water Sustainability Index (CWSI): Case Study Report [https://core.ac.uk/reader/80536600]

I. Juwana, B. J. C. Perera, and N. Muttil (2009) Conceptual framework for the development of West Java water sustainability index,” in 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences on Cairns, Australia 13-17 July 2009: pp 3343-3349.

Canadian Water Sustainability Index [https://publications.gc.ca/Collection/PH4-38-2007E.pdf]

Linking technology choice with operation and maintenance in the context of community water supply and sanitation [https://apps.who.int/iris/handle/10665/42538].

H. M. L. Chaves and S. Alipaz (2007). An integrated indicator based on basin hydrology, environment, life, and policy: The watershed sustainability index. Water Resources Management, 21:883–895. doi: 10.1007/s11269-006-9107-2.

E. Odjegba, G. Oluwasanya, O. Idowu, O. Shittu, and G. Brion (2020). Sustainability indices and risk analysis of drinking water systems in Southwest Nigeria. Journal of Water Supply: Research and Technology - AQUA, 69:591–603. doi: 10.2166/aqua.2020.002. DOI: https://doi.org/10.2166/aqua.2020.002

Water Safety Plans Managing drinking-water quality from catchment to consumer Water, Sanitation and Health Protection and the Human Environment World Health Organization Geneva [https://apps.who.int/iris/handle/10665/42890].

C. Sullivan (2002). Calculating a Water Poverty Index. World Dev, 30:1195–1210. doi: 10.1016/S0305-750X(02)00035-9. DOI: https://doi.org/10.1016/S0305-750X(02)00035-9

D. Koo, K. Piratla, and C. J. Matthews (2015). Towards Sustainable Water Supply: Schematic Development of Big Data Collection Using Internet of Things (IoT). Procedia Engineering, 118:489-497. doi: 10.1016/j.proeng.2015.08.465. DOI: https://doi.org/10.1016/j.proeng.2015.08.465

C. O. de Castro, Ó. C. S. Loureiro, A. V. Santos, J. Silva, and W. B. Rauen (2017). Water sustainability assessment for the region of Curitiba. International Journal of Sustainable Building Technology and Urban Development, 184-194 doi: 10.12972/susb.20170016. DOI: https://doi.org/10.12972/susb.20170016

H. M. L. Chaves and S. Alipaz (2007). An integrated indicator based on basin hydrology, environment, life, and policy: The watershed sustainability index. Water Resources Management, 21:883–895. doi: 10.1007/s11269-006-9107-2. DOI: https://doi.org/10.1007/s11269-006-9107-2

M. Van den Belt, T. Bowen, K. Slee, and V. Forgie (2013). Flood Protection: Highlighting an Investment Trap Between Built and Natural Capital. J Am Water Resour Assoc, 49: 681-692. doi: 10.1111/jawr.12063. DOI: https://doi.org/10.1111/jawr.12063

C. Dong, G. Schoups, and N. Van de Giesen (2013). Scenario development for water resource planning and management: A review. Technological Forecasting and Social Change, 4: 749-761. doi: 10.1016/j.techfore.2012.09.015. DOI: https://doi.org/10.1016/j.techfore.2012.09.015

D. P. LOUCKS (1997). Quantifying trends in system sustainability. Hydrological Sciences Journal, 42: 513-530. doi: 10.1080/02626669709492051. DOI: https://doi.org/10.1080/02626669709492051

Downloads

Published

2023-07-04

How to Cite

Septiyana, D., RAHMAN, M. A., ARIFF, T. F. M., SUKINDAR, N. A., & ADESTA, E. Y. T. (2023). ENHANCING SUSTAINABILITY INDEX PARAMETER USING ANFIS COMPUTATIONAL INTELLIGENCE MODEL. IIUM Engineering Journal, 24(2), 258–268. https://doi.org/10.31436/iiumej.v24i2.2810

Issue

Section

Materials and Manufacturing Engineering

Most read articles by the same author(s)