EFFECT OF PRINTING PARAMETERS AND POST-CURING ON MECHANICAL PROPERTIES OF PHOTOPOLYMER PARTS FABRICATED VIA 3D STEREOLITHOGRAPHY PRINTING

Authors

DOI:

https://doi.org/10.31436/iiumej.v24i2.2778

Keywords:

Additive manufacturing, Stereolithography

Abstract

Three-dimensional printing has recently come into the spotlight due to its promising potential to create physically three-dimensional parts or structures through computer-aided design. While there are many options for 3D printing methods, photopolymerization 3D printing has garnered much attention because of its high resolution. However, the mechanical properties of photopolymerized 3D printed parts can vary widely depending on the manufacturing parameters and post-processing settings used. This research focuses on studying the effect of printing variables on the mechanical properties of samples printed using a Stereolithography machine (Formlabs, Form+3). Three variables are used: layer thickness (25 and 50 ?m), part orientation (X and Z directions), and post-curing. Also, eight groups of 3D-printed photopolymer specimens for twenty-four specimens are used for the tensile test results. The results showed the printing variables affected the mechanical properties of samples, which were proven by Young's modulus, ultimate stress, and ultimate strain.

ABSTRAK: Pencetakan tiga dimensi baru-baru ini menjadi perhatian kerana potensinya yang menjanjikan bagi mencipta bahagian atau struktur tiga dimensi secara fizikal melalui reka bentuk bantuan komputer. Walaupun terdapat banyak pilihan bagi kaedah percetakan 3D, pencetakan 3D fotopolimerisasi telah mendapat banyak perhatian kerana resolusinya yang tinggi. Walau bagaimanapun, sifat mekanikal bahagian bercetak 3D fotopolimer adalah pelbagai bergantung pada parameter pembuatan dan tetapan pasca pemprosesan yang digunakan. Kajian ini memberi tumpuan kepada kesan pembolehubah cetakan terhadap sifat mekanikal sampel yang dicetak menggunakan mesin Stereolitografi (Formlabs, Form+3). Tiga pembolehubah digunakan: ketebalan lapisan (25 dan 50 ?m), orientasi bahagian (arah X dan Z), dan pasca pengawetan. Juga, lapan kumpulan spesimen fotopolimer cetakan 3D untuk dua puluh empat spesimen digunakan bagi mendapatkan keputusan ujian tegangan. Dapatan kajian menunjukkan pembolehubah cetakan mempengaruhi sifat mekanikal sampel, dibuktikan oleh modulus Young, tegangan utama, dan tarikan utama.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ponce de Leon C, Hussey W, Frazao F, Jones D, Ruggeri E, Tzortzatos S, Mckerracher RD, Wills RGA, Yang S, Walsh FC. (2014) The 3D printing of a polymeric electrochemical cell body and its characterization. Chemical Engineering Transactions, 41: 1-6. https://doi.org/10.3303/CET1441001.

Chong S, Chiu HL, Liao YC, Hung ST, Pan GT. (2015) Cradle to Cradle® design for 3D printing. Chemical Engineering, 45. https://doi.org/10.3303/CET1545279.

Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. (2018) Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143: 172-196. https://doi.org/10.1016/j.compositesb.2018.02.012. DOI: https://doi.org/10.1016/j.compositesb.2018.02.012

Standard, A.S.T.M. (2012) Standard terminology for additive manufacturing technologies. ASTM International F2792-12a, 1-9. https://doi: 10.1520/F2792-12A. DOI: https://doi.org/10.1520/F2792-12A

Hod L, Kurman M. (2013) Fabricated: The new world of 3D printing. John Wiley and Sons, 2013.

Ivanova O, Williams C, Campbell T. (2013) Additive manufacturing (AM) and nanotechnology: promises and challenges. Rapid prototyping journal, 19 ( 5): 353-364. https://doi.org/10.1108/RPJ-12-2011-0127. DOI: https://doi.org/10.1108/RPJ-12-2011-0127

Quan Z, Wu A, Keefe M, Qin X, Yu J, Suhr J, Byun JH, Kim BS, Chou TW. (2015) Additive manufacturing of multi-directional preforms for composites: opportunities and challenges. Materials Today, 18 (9): 503-512. https://doi.org/10.1016/j.mtadv.2019.100045. DOI: https://doi.org/10.1016/j.mattod.2015.05.001

Quan Z, Larimore Z, Wu A, Yu J , Qin X, Mirotznik M, Suhr J, Byun JH, Oh Y, Chou TW. (2016) Microstructural design and additive manufacturing and characterization of 3D orthogonal short carbon fiber/acrylonitrile-butadiene-styrene preform and composite. Composites Science and Technology, 126:139-148. https://doi.org/10.1016/j.compscitech.2016.02.021. DOI: https://doi.org/10.1016/j.compscitech.2016.02.021

Skliutas E, Kasetaite S, Jonušauskas L, Ostrauskaite J, Malinauska M. (2018) Photosensitive naturally derived resins toward optical 3-D printing. Optical Engineering, 57(4): 041412-041412. https://doi.org/10.1117/1.OE.57.4.041412. DOI: https://doi.org/10.1117/1.OE.57.4.041412

Janusziewicz R, Tumbleston JR, Quintanilla AL, Mecham SJ, DeSimone JM. (2016) Layerless fabrication with continuous liquid interface production. Proceedings of the National Academy of Sciences. 113(42): 11703-11708. https://doi.org/10.1073/pnas.1605271113. DOI: https://doi.org/10.1073/pnas.1605271113

O’Neil PF. (2018) Internal void fabrication via mask projection micro-stereolithography: a rapid repeatable microfluidic prototyping technique. Ph.D Dissertation. Dublin City University, 2018.

Naik D, Kiran R. (2018). On Anisotropy, Strain Rate and Size Effects in Vat Photopolymerization Based Specimens. Additive Manufacturing, 23: 181-196. https://doi.org/10.1016/j.addma.2018.08.021. DOI: https://doi.org/10.1016/j.addma.2018.08.021

E Aznarte, Ayranci C, Qureshi AJ. (2017) Digital light processing (DLP): Anisotropic tensile considerations. 2017 International Solid Freeform Fabrication Symposium. University of Texas at Austin.

Agrawal S, Ray H, Kulat A, Garhekar Y, Jibhakate R, Singh S, Bisaria H. (2023) Evaluation of Tensile Property of SLA 3D Printed NextDent Biocompatible Class I Material for Making Surgical Guides for Implant Surgery. Materials Today: Proceedings, 72: 1231-1235. https://doi.org/10.1016/j.matpr.2022.09.288. DOI: https://doi.org/10.1016/j.matpr.2022.09.288

Lee CS, Kim SG, Kim HJ, Ahn SH. (2007) Measurement of Anisotropic Compressive Strength of Rapid Prototyping Parts. Journal of materials processing technology, 187: 627-630. https://doi.org/10.1016/j.jmatprotec.2006.11.095. DOI: https://doi.org/10.1016/j.jmatprotec.2006.11.095

SH. Ahn, M. Montero, D. Odell, S. Roundy, and P. Wright. (2002) Anisotropic Material Properties of Pused Deposition Modeling ABS. Rapid prototyping journal, 8: 248-257. https://doi.org/10.1108/13552540210441166. DOI: https://doi.org/10.1108/13552540210441166

Mueller J, Shea K, and Daraio C. (2015) Mechanical Properties of Parts Fabricated with Inkjet 3D Printing Through Efficient Experimental Design. Materials and Design, 86: 902-912. https://doi.org/10.1016/j.matdes.2015.07.129. DOI: https://doi.org/10.1016/j.matdes.2015.07.129

Chockalingam K, Jawahar N, Chandrasekhar U. (2006) Influence of Layer Thickness on Mechanical Properties in Stereolithography. Rapid Prototyping Journal, 12: 106-113. https://doi.org/10.1108/13552540610652456. DOI: https://doi.org/10.1108/13552540610652456

Rankouhi B, Javadpour S, Delfanian F, Letcher T. (2016) Failure Analysis and Mechanical Characterization of 3D Printed ABS with Respect to Layer Thickness and Orientation. Journal of Failure Analysis and Prevention, 16 :467-481.

https://doi.org/10.1007/s11668-016-0113-2. DOI: https://doi.org/10.1007/s11668-016-0113-2

Quintana R, Choi JW, Puebla K, Wicker R. (2010) Effects of Build Orientation on Tensile Strength for Stereolithography-Manufactured ASTM D-638 Type I Specimens. The International Journal of Advanced Manufacturing Technolog, 46: 201-215. https://doi.org/10.1007/s00170-009-2066-z. DOI: https://doi.org/10.1007/s00170-009-2066-z

Domínguez-Rodríguez G, Ku-Herrera J, Hernández-Pérez A. (2018) An Assessment of the Effect of Printing Orientation, Density, and Filler Pattern on the Compressive Performance of 3D Printed ABS Structures by Fuse Deposition. The International Journal of Advanced Manufacturing Technology, 95: 1685-1695. https://doi.org/10.1007/s00170-017-1314-x. DOI: https://doi.org/10.1007/s00170-017-1314-x

Rohde S, Cantrell J, Jerez A, Kroese C, Damiani D, Gurnani R, DiSandro L, Anton J, Young A, Steinbach D, Ifju P. (2018) Experimental Characterization of The Shear Properties of 3D–Printed ABS and Polycarbonate Parts. Experimental Mechanics, 58: 871-884. https://doi.org/10.1007/s11340-017-0343-6. DOI: https://doi.org/10.1007/s11340-017-0343-6

Zguris Z. (2016) How Mechanical Properties of Stereolithography 3D Prints are Affected by UV Curing. Formlabs White Paper, 1-11.

Kerns J. (2015) What’s the difference between stereolithography and selective laser sintering. Machine Design, 17.

ASTM International (2014) Standard test method for tensile properties of plastics. ASTM international.

Downloads

Published

2023-07-04

How to Cite

DIAB, R. R., Enzi, A., & HASSOON, O. H. (2023). EFFECT OF PRINTING PARAMETERS AND POST-CURING ON MECHANICAL PROPERTIES OF PHOTOPOLYMER PARTS FABRICATED VIA 3D STEREOLITHOGRAPHY PRINTING. IIUM Engineering Journal, 24(2), 225–238. https://doi.org/10.31436/iiumej.v24i2.2778

Issue

Section

Materials and Manufacturing Engineering