ENHANCEMENT OF MPPT MODULE FOR PARTIAL SHADING PHOTOVOLTAIC SYSTEM UNDER UNIFORM IRRADIANCE CONDITIONS

Authors

DOI:

https://doi.org/10.31436/iiumej.v24i2.2752

Keywords:

Photovoltaic, Global maximum power point, Maximum power point tracking, Lookup table method, Partial shading condition

Abstract

Maximum Power Point Tracking (MPPT) algorithms play a critical role in maximizing the output power of solar panels. Different MPPT techniques are evaluated based on several criteria, such as tracking speed, simplicity, and accuracy with changes in solar irradiance and ambient temperature. Under partial shading conditions (PSCs), conventional techniques fail to track global maximum power points (GMPP). This paper aims to present an automatic and accurate method to fix the complexity of determining the accurate lookup table data in an automatic and fast process under uniform irradiance conditions (UICs) and PSCs. The proposed method runs the photovoltaic (PV) module with all potential irradiance and temperature. It automatically calculates the perfect voltage reference (Vref) for all potential PV system cases. The Vref is collected in an array, sent into a two-dimensional lookup table, and used for controlling the boost converter. Simulation results verify the effectiveness of the proposed method. In addition, a comparison was also made with the conventional perturb and observe (P&O) method. Under UICs, the proposed method takes less time than the conventional P&O algorithm to reach the MPP. The time difference between them is ?t = 0.133 sec and ?t = 0.04 sec for the first scanning process at t = 0 sec and sudden change irradiance at t = 1.5 sec, respectively. As for PSCs, the proposed method reached the GMPP during pattern 104 (first peak) without any power loss, while the P&O MPPT was able to track the GMPP but with power losses of 2729.97 watts.   

ABSTRAK: Algoritma Penjejakan Titik Kuasa Maksimum (MPPT) memainkan peranan penting dalam memaksimumkan kuasa keluaran panel solar. Teknik MPPT yang berbeza dinilai berdasarkan beberapa kriteria seperti kelajuan pengesanan, kesederhanaan, dan ketepatan dengan perubahan dalam sinaran suria dan suhu ambien. Di bawah keadaan teduhan separa (PSC), teknik konvensional gagal menjejak titik kuasa maksimum global (GMPP). Kajian ini bertujuan bagi membentangkan kaedah automatik dan tepat bagi membetulkan kesusahan dalam menentukan carian data berjadual secara tepat, automatik dan pantas di bawah keadaan sinaran seragam (UIC) dan PSC. Kaedah yang dicadangkan menjalankan modul fotovoltaik (PV) dengan semua potensi sinaran dan suhu dan mengira rujukan voltan sempurna (Vref) secara automatik bagi semua kes yang berpotensi dalam sebarang jenis sistem PV. Vref dikumpul dalam tata susunan, dihantar ke dalam jadual carian dua dimensi, dan digunakan bagi mengawal penukar rangsangan. Keputusan simulasi mengesahkan keberkesanan kaedah yang dicadangkan. Perbandingan juga dibuat dengan kaedah konvensional perhati dan ganggu (P&O). Di bawah UIC, kaedah yang dicadangkan mengambil masa yang lebih singkat berbanding algoritma konvensional P&O bagi mencapai MPP. Perbezaan masa antara keduanya adalah masing-masing, ?t = 0.133 saat dan ?t = 0.04 saat bagi proses pengimbasan pertama iaitu pada t = 0 saat dan sinaran perubahan mendadak pada t = 1.5 saat. Bagi PSC, kaedah yang dicadangkan mencapai GMPP semasa corak 104 (puncak pertama) tanpa kehilangan kuasa manakala MPPT P&O dapat mengesan GMPP tetapi dengan pengurangan kuasa sebanyak 2729.97 watt.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Heelan MY, Al-Qrimli FAM. (2020) Design and simulation of neuro-fuzzy-based MPPT controller for PV power system. Proceedings of the Int. Conf. on Electrical, Communication, and Computer Engineering (ICECCE 2020), 12-13 June 2020, Istanbul, Turkey, pp. 1-6.

doi: 10.1109/ICECCE49384.2020.9179287. DOI: https://doi.org/10.1109/ICECCE49384.2020.9179287

Zhang X, Gamage D, Wang B, Ukil A. (2021) Hybrid maximum power point tracking method based on iterative learning control and perturb & observe method. IEEE Trans. on Sustainable Energy, 12(1): 659-670. doi: 10.1109/TSTE.2020.3015255. DOI: https://doi.org/10.1109/TSTE.2020.3015255

Ostadrahimi A, Mahmoud Y. (2021) Novel spline-MPPT technique for photovoltaic systems under uniform irradiance and partial shading conditions. IEEE Trans. on Sustainable Energy, 12(1): 524-532. doi: 10.1109/TSTE.2020.3009054. DOI: https://doi.org/10.1109/TSTE.2020.3009054

Xu S, Gao Y, Zhou G, Mao G. (2021) A global maximum power point tracking algorithm for photovoltaic systems under partially shaded conditions using modified maximum power trapezium method. IEEE Trans. on Industrial Electronics, 68(1): 370-380.

doi: 10.1109/TIE.2020.2965498. DOI: https://doi.org/10.1109/TIE.2020.2965498

Kumar N, Hussain I, Singh B, Panigrahi BK. (2018) Framework of maximum power extraction from solar PV panel using self-predictive perturb and observe algorithm. IEEE Trans. on Sustainable Energy, 9(2): 895-903. doi: 10.1109/TSTE.2017.2764266. DOI: https://doi.org/10.1109/TSTE.2017.2764266

Bhattacharyya S, Kumar DSP, Samanta S, Mishra S. (2021) Steady output and fast tracking MPPT (SOFT-MPPT) for P&O and InC algorithms. IEEE Trans. on Sustainable Energy, 12(1): 293-302. doi: 10.1109/TSTE.2020.2991768. DOI: https://doi.org/10.1109/TSTE.2020.2991768

Ahmed RM, Zakzouk NE, Abdelkader MI, Abdelsalam AK. (2021) Modified partial-shading-tolerant multi-input-single-output photovoltaic string converter. IEEE Access, 9: 30663-30676. doi: 10.1109/ACCESS.2021.3058695. DOI: https://doi.org/10.1109/ACCESS.2021.3058695

Hsieh G, Hsieh H, Tsai C, Wang C. (2013) Photovoltaic power-increment-aided incremental - conductance MPPT with two-phased tracking. IEEE Trans. on Power Electronics, 28(6): 2895-2911. doi: 10.1109/TPEL.2012.2227279. DOI: https://doi.org/10.1109/TPEL.2012.2227279

Basoglu ME. (2019) Module level global maximum power point tracking strategy. Proceedings of the 2019 4th Int. Conf. on Power Electronics and their Applications (ICPEA), 25-27 Sept 2019, Elazig, Turkey, pp. 1-5. doi: 10.1109/ICPEA1.2019.8911173. DOI: https://doi.org/10.1109/ICPEA1.2019.8911173

Gonzalez-Castano, Restrepo C, Kouro S, Rodriguez J. (2021) MPPT algorithm based on artificial bee colony for PV system. IEEE Access, 9: 43121-43133.

doi: 10.1109/ACCESS.2021.3066281. DOI: https://doi.org/10.1109/ACCESS.2021.3066281

Zadeh MJZ, Fathi SH. (2017) A new approach for photovoltaic arrays modeling and maximum power point estimation in real operating conditions. IEEE Trans. on Industrial Electronics, 64(12): 9334-9343. doi: 10.1109/TIE.2017.2711571. DOI: https://doi.org/10.1109/TIE.2017.2711571

Reddy D, Ramasamy S. (2019) An artificial intelligent MPPT controller based three level SEPIC topology for 1.2kW solar PV system. Proceedings of the 2019 Innovations in Power and Advanced Computing Technology (i-PACT), 22-23 Mar 2019, Vellore, India, pp. 1-6. doi: 10.1109/i-PACT44901.2019.8960135. DOI: https://doi.org/10.1109/i-PACT44901.2019.8960135

Chandran A, Mathew BK. (2020) Comparative analysis of P&O and fuzzy logic controller based MPPT in a solar cell. Proceedings of the 2020 Third Int. Conf. on Smart Systems and Inventive Technology (ICSSIT), 20-22 Aug 2020, Tirunelveli, India, pp. 622-626.

doi: 10.1109/ICSSIT48917.2020.9214187. DOI: https://doi.org/10.1109/ICSSIT48917.2020.9214187

Udayalakshmi JK, Sheik MS. (2018) Comparative study of perturb & observe and lookup table maximum power point tracking techniques using MATLAB/Simulink. Proceedings of the 2018 Int. Conf. on Current Trends towards Converging Technologies (ICCTCT), 1-3 Mar 2018, Coimbatore, India, pp. 1-5. doi: 10.1109/ICCTCT.2018.8550835. DOI: https://doi.org/10.1109/ICCTCT.2018.8550835

Rolevski M, Zecevic Z. (2020) MPPT controller based on the neural network model of the photovoltaic panel. Proceedings of the 24th Int. Conf. on Information Technology (IT), 18-22 Fen 2020, Zabljak, Montenegro, pp. 1-4. doi: 10.1109/IT48810.2020.9070299. DOI: https://doi.org/10.1109/IT48810.2020.9070299

Bouazza F, Mohamed M, Bouziane B, Abdelhak D. (2019) Photovoltaic generator modeling based on lookup table approach and implementation on STM32F407 board of the perturb & observe algorithm based MPPT. Proceedings of the 2018 Int. Conf. on Applied Smart Systems (ICASS), 24-25 Nov 2018, Medea, Algeria, pp. 1-7.

doi: 10.1109/ICASS.2018.8652000. DOI: https://doi.org/10.1109/ICASS.2018.8652000

Ngo S, Chiu C. (2020) Simulation implementation of MPPT design under partial shading effect of PV panels. Proceedings of the 2020 Int. Conf. on System Science and Engineering (ICSSE), 31 Aug – 3 Sept 2020, Kagawa, Japan, pp. 1-6. doi: 10.1109/ICSSE50014.2020.9219306. DOI: https://doi.org/10.1109/ICSSE50014.2020.9219306

Alhussain HMA, Yasin N. (2020) Modeling and simulation of solar PV module for comparison of two MPPT algorithms (P&O & INC) in MATLAB/Simulink. Indonesian Journal of Electrical Engineering and Computer Science, 18(2): 666-677.

doi: 10.11591/ijeecs.v18.i2.pp666-677. DOI: https://doi.org/10.11591/ijeecs.v18.i2.pp666-677

Moreira HS, Gomes dos Reis MV, de Araujo LS, Perpetuo e Oliveira T, Villalva MG. (2017) An experimental comparative study of perturb and observe and incremental conductance MPPT techniques for two-stage photovoltaic inverter. Proceedings of the 2017 Brazilian Power Electronics Conference (COBEP), 19-22 Nov 2017, Juiz de Fora, Brazil, pp. 1-6.

doi: 10.1109/COBEP.2017.8257370. DOI: https://doi.org/10.1109/COBEP.2017.8257370

Ghasemi MA, Foroushani HM, Parniani M. (2016) Partial shading detection and smooth maximum power point tracking of PV arrays under PSC. IEEE Trans. on Power Electronics, 31(9): 6281-6292. doi: 10.1109/TPEL.2015.2504515. DOI: https://doi.org/10.1109/TPEL.2015.2504515

Downloads

Published

2023-07-04

How to Cite

Mohammed, H. A., Mohd Mokhtar, R. ., & Ali, H. I. (2023). ENHANCEMENT OF MPPT MODULE FOR PARTIAL SHADING PHOTOVOLTAIC SYSTEM UNDER UNIFORM IRRADIANCE CONDITIONS. IIUM Engineering Journal, 24(2), 117–130. https://doi.org/10.31436/iiumej.v24i2.2752

Issue

Section

Electrical, Computer and Communications Engineering

Funding data