NON-NEWTONIAN VISCOSITY BEHAVIOUR INVESTIGATION FOR MALAYSIAN WAXY CRUDE OILS AND IMPACT TO WAX DEPOSITION MODELLING
DOI:
https://doi.org/10.31436/iiumej.v24i2.2736Keywords:
waxy crude oil, viscosity, non-Newtonian viscosity, wax deposition, flow modelling, flow assurance, RheologyAbstract
Wax deposition is one of the major risks that causes a serious threat to pipeline transportation during operation, if not prevented. The remediation actions are usually costly; hence mitigation methods are in place to completely avoid the issues from happening. The wax deposition modelling technique has been accepted as a tool to design and continuously optimize the wax management strategy. Non-Newtonian oil-wax viscosity is an important parameter affecting wax deposition in pipelines. The present and widely used viscosity model assumes exponential behaviour as observed in the emulsion system. In this paper, it is demonstrated that this assumption may not be suitable for Malaysian waxy crude oil applications due to instantaneous change of viscosity below WAT and PPT. This paper focuses on the application of the Pedersen and Ronningsen viscosity model available in the commercial fluid and flow simulators namely PVTsim ®, Multiflash ® and OLGA ® which are widely used by the flow assurance fraternities, and how it will impact wax deposition prediction accuracy specifically when applied to Malaysian waxy crude oils.
ABSTRAK: Pemendapan lilin adalah salah satu risiko utama yang menyebabkan ancaman serius kepada pengangkutan saluran paip semasa operasi jika tidak dicegah. Proses membaiki biasanya memerlukan kos yang tinggi; oleh itu kaedah mitigasi disediakan bagi mengelakkan isu ini daripada berlaku. Teknik model pemendapan lilin telah diterima sebagai alat bagi mereka bentuk dan merupakan strategi optimum pengurusan lilin secara berterusan. Kelikatan minyak-lilin bukan Newton adalah salah satu parameter penting yang mempengaruhi pemendapan lilin dalam saluran paip. Anggaran model kelikatan semasa yang digunakan secara meluas menjangkakan tingkah laku eksponen seperti yang diperhatikan dalam sistem emulsi. Kajian ini menunjukkan bahawa kaedah anggaran mungkin tidak sesuai bagi aplikasi minyak mentah berlilin Malaysia disebabkan oleh perubahan kelikatan serta-merta di bawah WAT dan PPT. Kertas kerja ini memberi tumpuan kepada aplikasi model kelikatan Pedersen dan Ronningsen yang terdapat dalam cecair komersial dan simulator aliran iaitu PVTsim ®, Multiflash ® dan OLGA ® yang digunakan secara meluas oleh persatuan jaminan aliran, dan keberkesanan pada ketepatan anggaran pemendapan lilin khususnya apabila digunakan pada minyak mentah berlilin Malaysia.
Downloads
Metrics
References
Zhang X, Pedrosa N, Speranza A, Queimada A, Richard S. (2019) Impact of fluid flow and thermodynamic wax models on multiphase wax deposition simulation. Paper presented at the BHR 19th International Conference on Multiphase Production Technology, Cannes, France, June 2019.
Soedarmo AA, Daraboina N, Sarica C. (2017) Validation of wax deposition models with recent laboratory scale flow loop experimental data. Journal of Petroleum Science and Engineering, 149: 351-366. https://doi.org/10.1016/j.petrol.2016.10.017 DOI: https://doi.org/10.1016/j.petrol.2016.10.017
Singh A, Lee H, Singh P, Sarica C. (2011) Flow assurance: Validation of wax deposition models using field data from a subsea pipeline. Offshore Technology Conference. https://doi.org/10.4043/21641-ms DOI: https://doi.org/10.4043/21641-MS
Pedersen KM, Rønningsen HP. (2000) Effect of Precipitated Wax on Viscosity: A Model for Predicting Non-Newtonian Viscosity of Crude Oils. Energy & Fuels, 14(1): 43-51. https://doi.org/10.1021/ef9901185 DOI: https://doi.org/10.1021/ef9901185
Matzain AB. (1999) Multiphase Flow Paraffin Deposition Modeling (Doctoral dissertation). University of Tulsa, Oklahoma.
Giacchetta G, Marchetti B, Leporini M, Terenzi A, Dall’acqua DSV, Capece L, Grifoni, RC. (2017) Pipeline wax deposition modeling: A sensitivity study on two commercial software. Petroleum, 5(2): 206-213. https://doi.org/10.1016/j.petlm.2017.12.007 DOI: https://doi.org/10.1016/j.petlm.2017.12.007
Coronado O, Kak A. (2017) Workflow to Evaluate Wax Deposition Risk Along Subsea Production Systems. Offshore Technology Conference. https://doi.org/10.4043/27855-ms DOI: https://doi.org/10.4043/27855-MS
Sulaimon AA, Yusoff ME. (2015) Wax and Asphaltene Deposition Tendency of Malaysian Crude Oils. Proceedings of the International Conference on Integrated Petroleum Engineering and Geosciences. https://doi.org/10.1007/978-981-287-368-2_15 DOI: https://doi.org/10.1007/978-981-287-368-2_15
Petrus TB, Azuraien J. (2014) Rheological Measurement of Waxy Crude Oil under Controlled Stress Rheometer: Determination of the Setting Parameters. Journal of Applied Sciences, 14(18): 2047-2053. https://doi.org/10.3923/jas.2014.2047.2053 DOI: https://doi.org/10.3923/jas.2014.2047.2053
Anuar A, Rasib AA, Norpiah RM, Ali Z. (2022) Pigging the Unpiggable: A case study of waxy crude oil pigging simulation and field implementation. SPE Asia Pacific Oil & Gas Conference and Exhibition. https://doi.org/10.2118/210724-ms DOI: https://doi.org/10.2118/210724-MS
Vinay G, Wachs A, Agassant JF. (2006) Numerical simulation of weakly compressible Bingham flows: The restart of pipeline flows of waxy crude oils. Journal of Non-Newtonian Fluid Mechanics, 136: 93-105. https://doi.org/10.1016/j.jnnfm.2006.03.003 DOI: https://doi.org/10.1016/j.jnnfm.2006.03.003
Bhaskoro PT. (2017) Viscosity prediction for waxy crude oil – Effects of physico-chemical parameters (Doctoral dissertation). Universiti Teknologi PETRONAS, Perak, Malaysia
Bhaskoro PT, Japper@Jaafar A, Sariman MZ, Norpiah R, Shafian SR. (2020) Viscosity Model of Waxy Crude Oil Based on the Physico-Chemical Properties. Offshore Technology Conference Asia. https://doi.org/10.4043/30084-ms DOI: https://doi.org/10.4043/30084-MS
Barnes HA. (1997) Thixotropy - a review. Journal of Non-Newtonian Fluid Mechanics, 70 (1–2): 1-33. https://doi.org/10.1016/s0377-0257(97)00004-9 DOI: https://doi.org/10.1016/S0377-0257(97)00004-9
Yoshimura A, Prud Homme RK. (1988) Wall slip corrections for couette and parallel disk viscometers. Journal of Rheology, 32(1): 53-67. https://doi.org/10.1122/1.549963 DOI: https://doi.org/10.1122/1.549963
Japper-Jaafar A, Bhaskoro P, Sean L, Sariman M, Nugroho H. (2015) Yield stress measurement of gelled waxy crude oil: Gap size requirement. Journal of Non-Newtonian Fluid Mechanics, 218: 71-82. https://doi.org/10.1016/j.jnnfm.2015.02.001 DOI: https://doi.org/10.1016/j.jnnfm.2015.02.001
PVTsim Nova Method Documentation
OLGA Method Documentation
Pedersen KS. (2003) Influence of Wax Inhibitors on Wax Appearance Temperature, Pour Point, and Viscosity of Waxy Crude Oils. Energy & Fuels, 17(1): 321-328. https://doi.org/10.1021/ef020142 DOI: https://doi.org/10.1021/ef020142+
Santos IC, Oliveira P, Mansur CRE. (2017) Factors that affect crude oil viscosity and techniques to reduce it: A review. Brazilian Journal of Petroleum and Gas, 11(2): 115-130. https://doi.org/10.5419/bjpg2017-0010 DOI: https://doi.org/10.5419/bjpg2017-0010
Wilke, C.R. and Chang, P. (1995) Correlation of Diffusion Coefficient in Dilute Solutions.
AIChE Journal, 1(2):264-270.https://doi: 10.1002/AIC.690010222 DOI: https://doi.org/10.1002/aic.690010222
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.