THE EFFECTIVENESS OF 6T BEAMFORMER ALGORITHM IN SMART ANTENNA SYSTEMS FOR CONVERGENCE ANALYSIS
DOI:
https://doi.org/10.31436/iiumej.v24i2.2730Keywords:
Beamforming, Convergence Analysis, Mean Square Error, Space Division Multiple Access, Weight ComputationAbstract
Recently, the need for more capacity in wireless networks has motivated this current research towards the creation of standards and algorithms that selectively take advantage of space. The development of smart antenna arrays and related beamforming algorithms has received a lot of attention. Cell Planning is an important process in networking, which is used to ensure coverage and avoid interference. Also, cell planning plays a vital role in the placement of base stations in a network. The communication between the base station (BS) and mobile station can happen either using a single antenna or an array of antenna elements. In the case of using a single antenna, if the Electromagnetic (EM) wave has low SNR, then BS cannot decode the data and drops the signal. Conversely, when an array is used, a signal with low SNR also falls on the base station, and due to multiple delayed copies of the same signal, the data gets decoded successfully. With Space Division Multiple Access (SDMA), the frequencies allotted for mobile communication are reused to provide channel access to multiple users at the same time preserving the allowable reuse distance in network architecture, thus increasing the channel capacity and facilitating multiple users separated by a distance at the same time with frequency reuse. The smart antenna system at the base station performs the transceiver function. The transmission phase uses the output from the reception i.e., the detected user direction radiates a beam towards the desired user for communication to narrow the beam. The proposed 6T Beamformer method is a six-tap-based system with three taps having fixed step sizes and the other three having variable step sizes. With the execution of each tap or module, better convergence and quality of service are achieved. In the result analysis, the proposed method is compared with existing high-performing algorithms like LMS, Griffiths, and VSSLMS against Mean Square Error (MSE) to show that it converges faster at the 9th iteration which is better than others in all the probabilities.
ABSTRAK: Dewasa ini, keperluan terhadap lebih kapasiti dalam rangkaian tanpa wayar menjadi motivasi kepada kajian terkini dalam membentu piawai dan algoritma yang menjimatkan ruang. Pembangunan tata susun antena pintar dan algoritma pembentukan pancaran telah mendapat perhatian ramai. Merancang sel adalah proses penting dalam jaringan, bagi memastikan liputan terhasil dan mengelak dari gangguan. Juga, merancang sel memainkan peranan penting dalam menempatkan tapak stesen dalam rangkaian. Komunikasi antara stesen pusat (BS) dan stesen bergerak dapat berlaku samada menggunakan antena tunggal atau elemen tata susunan antena. Dalam kes antena tunggal, jika gelombang Elektromagnetik (EM) mempunyai SNR rendah, BS tidak dapat menafsirkan kod data dan signal akan terabai. Sebaliknya, apabila susun atur digunakan, signal dengan gelombang SNR rendah akan terus ke stesen pusat dan disebabkan beberapa gelombang sama yang tertunda, data dapat ditafsir dengan sempurna. Melalui Capaian Pelbagai Pembahagi Ruang (SDMA), frekuensi yang ditimbulkan bagi komunikasi bergerak telah diguna balik bagi menyediakan kemasukan saluran kepada pelbagai pengguna pada waktu sama memelihara jarak guna balik yang dibenarkan dalam binaan rangkaian, oleh itu menambah kapasiti saluran dan membantu gandaan pengguna yang dipisahkan oleh jarak dengan kekerapan guna balik pada masa sama. Sistem antena pintar di stesen pusat pula menjalankan fungsi pemancar. Fasa pemancaran ini menggunakan pengeluaran dari penerima iaitu, pengguna yang dikesan dari arah pancaran, akan memancarkan gelombang kepada pengguna yang memerlukan komunikasi, ini dapat mengecilkan jarak pancaran. Kaedah yang dicadangkan ini menghasil pancaran 6T iaitu sistem berdasarkan-enam-tap di mana tiga tap mempunyai saiz langkah yang tetap dan tiga lagi mempunyai saiz langkah berubah. Dengan pelaksanaan ini setiap tap atau modul mempunyai penumpuan yang lebih baik dan servis yang berkualiti terhasil. Dapatan kajian menunjukkan, kaedah yang dicadangkan dapat dibandingkan dengan algoritma berprestasi tinggi sedia ada seperti LMS, Griffiths, dan VSSLMS berbanding min kuasa dua ralat (MSE) bagi menunjukkan ia tertumpu lebih laju pada iterasi ke 9, iaitu lebih baik daripada ke semua kebarangkalian.
Downloads
Metrics
References
Kabao?lu N. (2018) Suboptimal Frequency-Selective Transceiver Design for Multicarrier Millimeter Wave MIMO Systems. Electrica, 18(1): 83-89. doi:10.5152/iujeee.2018.1813 DOI: https://doi.org/10.5152/iujeee.2018.1813
Tokan NT. (2019) Array Antenna Feeding Network Design for 5G MIMO Applications. Electrica, 19(2): 120-127. doi: 10.26650/electrica.2019.19004 DOI: https://doi.org/10.26650/electrica.2019.19004
Hameed AA, Ajlouni N, Orman Z, Özyava? A. (2020) Investigating the Effectiveness of Adaptive Step Size LMS Algorithms for the Use with VOIP Applications. Electrica, 20(2): 116-123. doi: 10.5152/electrica.2020.19080 DOI: https://doi.org/10.5152/electrica.2020.19080
Li X, Wang J, Li Z, Li Y, Geng Y, Chen M, Zhang Z. (2022) Leaky-Wave Antenna Array with Bilateral Beamforming Radiation Pattern and Capability of Flexible Beam Switching. IEEE Trans. Anntenas Propag., 70(2): 1535-1540. doi: 10.1109/TAP.2021.3111157 DOI: https://doi.org/10.1109/TAP.2021.3111157
Ghaffar A, Li XJ, Awan WA, Hussain N. (2021) Reconfigurable Antenna: Analysis and Applications. In Matin, MA (eds) Wideband, Multiband, and Smart Antenna Systems. Signals and Communication Technology. Springer, Cham:269-323. https://doi.org/10.1007/978-3-030-74311-6_9. DOI: https://doi.org/10.1007/978-3-030-74311-6_9
Kodgirwar VP, Deosarkar SB, Joshi KR. (2020) Design of Dual-Band Beam Switching Array for Adaptive Antenna Applications Using Hybrid Directional Coupler and E-Shape Slot Radiator. Wireless Personal Communications, 113 :423-437. https://doi.org/10.1007/s11277-020-07207-3 DOI: https://doi.org/10.1007/s11277-020-07207-3
Nawaz H, Tekin I. (2020) Ten switched?beams with 2×2 series?fed 2.4 GHz array antenna and a simple beam?switching network. Int. J. RF Microwave Comput. Aided Eng., 30(6): e22184. https://doi.org/10.1002/mmce.22184 DOI: https://doi.org/10.1002/mmce.22184
Baba AA, Hashmi RM, Attygalle M, Esselle KP, Borg D. (2021) Ultrawideband beam steering at mm-wave frequency with planar dielectric phase transformers. IEEE Trans. Antennas Propag., 70(3): 1719-1728. DOI: https://doi.org/10.1109/TAP.2021.3111637
Simone M, Fanti A, Lodi MB, Pisanu T, Mazzarella G. (2021) An in-line coaxial-to-waveguide transition for Q-band single-feed-per-beam antenna systems. Appl. Sci., 11(6): 2524. https://doi.org/10.3390/app11062524 DOI: https://doi.org/10.3390/app11062524
Thazeen S, Mallikarjunaswamy S, Saqhib MN. (2022) Septennial Adaptive Beamforming Algorithm. In International Conference on Smart Information Systems and Technologies (SIST): 28-30 April 2022; Nur-Sultan, Kazakhstan. pp 1-4. DOI: https://doi.org/10.1109/SIST54437.2022.9945753
Cai Z, Zheng X. (2018) A Private and Efficient Mechanism for Data Uploading in SmartCyber-Physical Systems. IEEE Trans. Network Sci. Eng., 7(2): 766-775.
doi: 10.1109/TNSE.2018.2830307 DOI: https://doi.org/10.1109/TNSE.2018.2830307
Dakulagi V, Bakhar M. (2020) Advances in smart antenna systems for wireless communication. Wireless Personal Communications, 110(2): 931-957. DOI: https://doi.org/10.1007/s11277-019-06764-6
Tong L, Ramanathan P. (2004) Energy efficient multicasting using smart antennas for wireless ad hoc networks in multipath environments. In IEEE Global Telecommunications Conference, GLOBECOM '04: 29 November 2004 - 03 December 2004; Dallas, TX, USA. 6: 4109-4113.
doi: 10.1109/GLOCOM.2004.1379138 DOI: https://doi.org/10.1109/GLOCOM.2004.1379138
Ali WAE, Hassan AHG. (2014) A hybrid least mean square/sample matrix inversion algorithm using microstrip antenna array. In Science and Information Conference: 27-29 August 2014; London, UK. pp 871-876. doi: 10.1109/SAI.2014.6918288. DOI: https://doi.org/10.1109/SAI.2014.6918288
Anjaneyulu P, Rao PVDS, Sunehra D. (2021) Effect of Various Parameters on Minimum Mean Square Error and Adaptive Antenna Beamforming using LMS Algorithm. In 6th International Conference for Convergence in Technology (I2CT): 02-04 April 2021; Maharashtra, India. pp 1-5. doi: 10.1109/I2CT51068.2021.9418179. DOI: https://doi.org/10.1109/I2CT51068.2021.9418179
Mayyas K, Aboulnasr T. (1997) Leaky LMS algorithm: MSE analysis for Gaussian data. IEEE Trans. Signal Process., 45(4):927-934. doi: 10.1109/78.564181. DOI: https://doi.org/10.1109/78.564181
Saqhib MN, Lakshmikanth S. (2020) Performance Anatomization of Routing Protocols in Wireless Sensor Network. International Journal of Advanced Trends in Computer Science and Engineering, 9(4): 5691-5699. DOI: https://doi.org/10.30534/ijatcse/2020/221942020
Mallaiah N, Rao NVK, Ramakrishna D. (2019) RLS Adaptive Beamforming Algorithm in terms of Energy Efficiency For Smart Antenna System. In IEEE Indian Conference on Antennas and Propagation (InCAP): 19-22 December 2019; Ahmedabad, India. pp 1-4.
doi: 10.1109/InCAP47789.2019.9134501. DOI: https://doi.org/10.1109/InCAP47789.2019.9134501
Wang X, Benesty J, Chen J, Cohen I. (2020) Beamforming with Small-Spacing Microphone Arrays Using Constrained/Generalized LASSO. IEEE Signal Process Lett., 27: 356-360.
doi: 10.1109/LSP.2020.2971790. DOI: https://doi.org/10.1109/LSP.2020.2971790
Roopa S, Narasimhan SV. (2021) Improved stability performance of a feedback active noise control using a Steiglitz-McBride adaptive notch filter and robust secondary path identification based on variable step size Griffiths LMS algorithm. Noise Control Engineering Journal, 69(2): 136-145. https://doi.org/10.3397/1/376914 DOI: https://doi.org/10.3397/1/376914
Shi L, Zhao H, Zeng X, Yu Y. (2019) Variable step-size widely linear complex-valued NLMS algorithm and its performance analysis. Signal Process., 165: 1-6. https://doi.org/10.1016/j.sigpro.2019.06.029 DOI: https://doi.org/10.1016/j.sigpro.2019.06.029
Tuladhar SR, Buck JR. (2020) Unit Circle Rectification of the Minimum Variance Distortionless Response Beamformer. IEEE J. Oceanic Eng., 45(2): 500-510. doi: 10.1109/JOE.2018.2876584. DOI: https://doi.org/10.1109/JOE.2018.2876584
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.