MOBILE GAS SENSING FOR LABORATORY INFRASTRUCTURE
DOI:
https://doi.org/10.31436/iiumej.v25i1.2727Keywords:
Mobile gas sensing, gas sensors, , toxic gases, , hazardous gas detectionAbstract
Indoor air quality has become a growing concern in modern society due to prolonged indoor working hours that lead to the frequent exposure to numerous toxic gases from various sources. These pollutants, including volatile organic compounds (VOCs), pose severe health risks such as asthma and lung cancer. To address this critical issue, this project focuses on developing and evaluating an advanced gas detection system that explicitly targets VOCs by integrating two novel metal oxide semiconductor (MOX)-based gas sensors, ENS 160 and TED110. Different sensor parameters, such as the air quality index (AQI) and volatile organic compounds (VOCs), were evaluated using 12 volatile organic chemicals. The findings revealed that the ENS 160 sensor performs excellently, detecting 60 gas samples out of 72, with an average detection rate of approximately 83%. In contrast, the TED110 sensor demonstrated considerably lower performance and response in 24 out of 72 gas samples, with a detection rate of about 33%. The results contribute insights into the gas sensor's characteristics, providing essential information to enhance indoor air quality monitoring technology, particularly in laboratory environments.
ABSTRAK: Setiap hari, banyak gas toksik, letupan dan beracun berlaku di dalam dan di luar rumah daripada pelbagai sumber. Dalam masyarakat moden, kebanyakan orang menghabiskan 90% masa bekerja mereka di dalam rumah; oleh itu, kualiti udara dalaman secara beransur-ansur bertambah buruk daripada suasana luar. Projek ini sedang membangunkan sistem pengesanan dan pemantauan moden yang canggih untuk mengesan pelbagai gas berbahaya, seperti sebatian organik meruap (VOC). Dua penderia gas berasaskan semikonduktor oksida logam (MOX) novel telah diperkenalkan dalam projek ini dengan mikropengawal yang dikemas kini untuk pemerolehan data dan pemprosesan data. Tambahan pula, parameter sensor yang berbeza (AQI, TVOC) telah dinilai dengan 12 bahan kimia organik yang tidak menentu. Semua ujian telah dijalankan dalam tudung kimia tradisional dengan tiga kuantiti sampel yang berbeza (5?L, 10?L, 50?L) pada jarak 40 cm dan 100 cm. Akhir sekali, volum minimum yang boleh dikesan berdasarkan jarak antara nod sensor dan sumber bocor telah dianalisis selepas eksperimen yang meluas dengan kedua-dua sensor. Sensor ENS 160 sedang mengesan 60 sampel gas daripada 72, dalam ketiga-tiga parameter seperti AQI, TVOC dan kadar pengesanan CO2 sekitar 83%. TED110 menunjukkan prestasi yang sangat rendah; ia telah bertindak balas kepada 24 daripada 72 sampel gas, dan kadar pengesanan ialah 33%.
Downloads
Metrics
References
O. US EPA. (2016). Technical Air Pollution Resources. Retrieved from https://www.epa.gov/technical-air-pollution-resources (Accessed: October 23, 2021).
Pandey, P., & Yadav, R. (2018). A Review on Volatile Organic Compounds (VOCs) as Environmental Pollutants: Fate and Distribution. Int. J. Plant Environ., 4. doi: 10.18811/ijpen.v4i02.2. DOI: https://doi.org/10.18811/ijpen.v4i02.2
Ghorani-Azam, A., Riahi-Zanjani, B., & Balali-Mood, M. (2016). Effects of air pollution on human health and practical measures for prevention in Iran. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci., 21, 65. doi: 10.4103/1735-1995.189646. DOI: https://doi.org/10.4103/1735-1995.189646
Hou, L., Li, Y., Qian, X., Shu, C.-M., Yuan, M., & Duanmu, W. (2021). Large-scale experimental investigation of the effects of gas explosions in underdrains. J. Saf. Sci. Resil., 2(2), 90–99. doi: 10.1016/j.jnlssr.2021.03.001. DOI: https://doi.org/10.1016/j.jnlssr.2021.03.001
Al-Okby, M. F. R., Neubert, S., Roddelkopf, T., & Thurow, K. (2021). Mobile Detection and Alarming Systems for Hazardous Gases and Volatile Chemicals in Laboratories and Industrial Locations. Sensors, 21(23). doi: 10.3390/s21238128. DOI: https://doi.org/10.3390/s21238128
Al-Okby, M. F. R., Roddelkopf, T., Fleischer, H., & Thurow, K. (2022). Evaluating a Novel Gas Sensor for Ambient Monitoring in Automated Life Science Laboratories. Sensors, 22(21). doi: 10.3390/s22218161. DOI: https://doi.org/10.3390/s22218161
Al-Okby, M. F. R., Neubert, S., Roddelkopf, T., Fleischer, H., & Thurow, K. (2022). Evaluating of IAQ-Index and TVOC Parameter-Based Sensors for Hazardous Gases Detection and Alarming Systems. Sensors, 22(4). doi: 10.3390/s22041473. DOI: https://doi.org/10.3390/s22041473
Ten health issues WHO will tackle this year. https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019 (Accessed: October 23, 2021).
Hunter, G. W., et al. (2020). Editors’ Choice - Critical Review - A Critical Review of Solid State Gas Sensors. J. Electrochem. Soc., 167(3). doi: 10.1149/1945-7111/ab729c. DOI: https://doi.org/10.1149/1945-7111/ab729c
Liu, X., Cheng, S., Liu, H., Hu, S., Zhang, D., & Ning, H. (2012). A Survey on Gas Sensing Technology. Sensors, 12(7), 9635–9665. doi: 10.3390/s120709635.
Xu, L., et al. (2022, July). Hybrid Gas Sensor Array to Identify and Quantify Low-Concentration VOCs Mixtures Commonly Found in Chemical Industrial Parks. IEEE Sens. J., 22(13), 13434–13441. doi: 10.1109/JSEN.2022.3176049. DOI: https://doi.org/10.1109/JSEN.2022.3176049
Examples of Common Laboratory Chemicals and their Hazard Class. https://orf.od.nih.gov/EnvironmentalProtection/WasteDisposal/Pages/Examples+of+Common+Laboratory+ChemicalsandtheirHazardClass.aspx (Accessed: July 09, 2022).
Wyatt, P. (2021). Long-Term Effects of Severe Carbon Monoxide Poisoning. Wyatt Law Firm, PLLC. https://www.wyattlawfirm.com/long-term-effects-of-severe-carbon-monoxide-poisoning/ (Accessed: July 06, 2022).
Chrisodgen. (2019). CO2 affects human health at lower levels than previously thought. AirQualityNews. https://airqualitynews.com/2019/07/10/co2-affects-human-health-at-lower-levels-than-previously-thought/ (Accessed: July 06, 2022).
Shiwen Huang and Haomin Li and Mingrui Wang and Yaoyao Qian and Kyle Steenland and William Michael Caudle and Yang Liu and Jeremy Sarnat and Stefania Papatheodorou and Liuhua Shi (2021). Long-term exposure to nitrogen dioxide and mortality: A systematic review and meta-analysis. Sci. Total Environ., 776, 145968. doi: 10.1016/j.scitotenv.2021.145968. DOI: https://doi.org/10.1016/j.scitotenv.2021.145968
Cheng, Shumin and Chang-Chien, Guo-Ping and Huang, Qianli and Zhang, Yu-Bo and Yan, Ping and Zhang, Jiale and Wang, Yujing and Zhang, Daqing and Teng, Guopeng (2019). Global Research Trends in Health Effects of Volatile Organic Compounds during the Last 16 Years: A Bibliometric Analysis. Aerosol Air Qual. Res., 19(8), 1834–1843. doi: 10.4209/aaqr.2019.06.0327. DOI: https://doi.org/10.4209/aaqr.2019.06.0327
Clifton, J. (2017, November 03). What are the Uses of Acetone? | The Chemistry Blog. ReAgent Chemicals. https://www.chemicals.co.uk/blog/what-are-the-uses-of-acetone (Accessed: July 06, 2022).
Liu, X., Cheng, S., Liu, H., Hu, S., Zhang, D., & Ning, H. (2012). A Survey on Gas Sensing Technology. Sensors, 12(7). doi: 10.3390/s120709635. DOI: https://doi.org/10.3390/s120709635
Dhall, S., Mehta, B. R., Tyagi, A. K., & Sood, K. (2021). A review on environmental gas sensors: Materials and technologies. Sens. Int., 2, 100116. doi: 10.1016/j.sintl.2021.100116. DOI: https://doi.org/10.1016/j.sintl.2021.100116
Neubert, S., Roddelkopf, T., Al-Okby, M. F. R., Junginger, S., & Thurow, K. (2021). Flexible IoT Gas Sensor Node for Automated Life Science Environments Using Stationary and Mobile Robots. Sensors, 21(21). doi: 10.3390/s21217347. DOI: https://doi.org/10.3390/s21217347
Al-Okby, M. F. R., Neubert, S., Roddelkopf, T., & Thurow, K. (2021). Integration and Testing of Novel MOX Gas Sensors for IoT-based Indoor Air Quality Monitoring. In 2021 IEEE 21st International Symposium on Computational Intelligence and Informatics (CINTI), pp. 000173–000180. doi: 10.1109/CINTI53070.2021.9668462. DOI: https://doi.org/10.1109/CINTI53070.2021.9668462
Al-Okby, M. F. R., Roddelkopf, T., Fleischer, H., & Thurow, K. (2022). Robot-based Environmental Monitoring in Automated Life Science Laboratories. In 2022 IEEE 10th Jubilee International Conference on Computational Cybernetics and Cyber-Medical Systems (ICCC), pp. 000395–000400. doi: 10.1109/ICCC202255925.2022.9922865. DOI: https://doi.org/10.1109/ICCC202255925.2022.9922865
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Funding data
-
European Research Council
Grant numbers 856405