PARAMETRIC OPTIMIZATION OF OIL PALM MESOCARP FIBER VALORIZATION WITH HYBRID OZONATION-ULTRASONIC PRETREATMENT METHOD

Authors

DOI:

https://doi.org/10.31436/iiumej.v24i2.2717

Keywords:

Hybrid ozonation-ultrasonic lignin degradation, Oil Palm Mesocarp Fiber, RSM, AOPS Pretreatment

Abstract

Oil palm mesocarp fiber is a promising lignocellulosic biomass as a raw material for valorizing biomass into more valuable products such as second-generation biofuels, biocomposites, or bioenergy. However, the lignin composition present in lignocellulosic biomass provides resistance to the valorization process and protects the cellulose composition, thereby limiting the conversion of cellulose into more valuable products. The hybrid ozonation-ultrasonic method as a lignin-degrading method is starting to be considered an effective method. Additionally, a Box-Behnken Design (BBD) was employed to investigate each independent variable's effect on pretreatment process conditions using the response surface methodology (RSM), namely reaction time (30-90) min, reaction temperature (20 -40) oC and ozone flow rate (1-3) L/min to the response of the percentage of lignin degradation (%). The optimum condition of the pretreatment process is determined using the desirability function graph. The results showed that reaction time, reaction temperature, and ozone flow rate had a significant effect on lignin degradation (p <0.05). The optimum conditions obtained the highest percentage of lignin degradation, namely 92.08% at a reaction temperature of 30 oC with an ozone flow rate of 2 L/min for 60 minutes reaction time. The decrease in lignin absorption peaks at 1638 cm-1 and 1427 cm-1 was supported by the results of the analysis of increased crystallinity in the sample after the pretreatment of lignin degradation to 80.20% and was validated by changes in the morphology of the mesocarp fiber after the pretreatment process indicating that the lignin compound had been successfully degraded from cellulose products of mesocarp fibers.

ABSTRAK: Sabut gentian kelapa sawit berpotensi sebagai bahan mentah biojisim lignoselulosa bagi menambah nilai produk biojisim seperti bahan bio api generasi kedua, biokomposit atau biotenaga. Walau bagaimanapun, komposisi lignin yang wujud dalam biojisim lignoselulosa menentang proses tambah nilai dan melindungi komposisi selulosa, dengan itu mengehadkan penukaran selulosa kepada produk yang lebih berharga. Kaedah hibrid ozonasi-ultrasonik sebagai kaedah merendahkan lignin, mula mendapat perhatian sebagai kaedah berkesan. Selain itu, Reka Bentuk Kotak-Behnken (BBD) telah digunakan bagi menyiasat setiap kesan pembolehubah bebas pada keadaan proses prarawatan menggunakan kaedah permukaan tindak balas (RSM), iaitu masa tindak balas (30-90) min, suhu tindak balas (20 -40) oC dan kadar aliran ozon (1-3) L/min terhadap tindak balas pada peratusan degradasi lignin (%). Keadaan optimum bagi proses prarawatan ditentukan menggunakan graf fungsi keboleh inginan. Dapatan kajian menunjukkan bahawa masa tindak balas, suhu tindak balas, dan kadar aliran ozon mempunyai kesan yang signifikan terhadap degradasi lignin (p<0.05). Keadaan optimum peratusan degradasi lignin tertinggi adalah pada 92.08% pada suhu tindak balas 30 oC dengan kadar aliran ozon 2 L/min selama 60 minit masa tindak balas. Penurunan puncak penyerapan lignin pada 1638 cm-1 dan 1427 cm-1 disokong oleh keputusan analisis peningkatan kehabluran sampel selepas prarawatan degradasi lignin sebanyak 80.20% dan telah disahkan oleh perubahan morfologi sabut gentian selepas proses prarawatan menunjukkan bahawa sebatian lignin telah berjaya didegradasi daripada produk selulosa sabut gentian.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Megashah LN, Ariffin H, Zakaria MR, Hassan MA. (2018). Properties of Cellulose Extract from Different Types of Oil Palm Biomass. IOP Conference Series: Materials Science and Engineering, 368. https://doi.org/10.1088/1757-899X/368/1/012049 DOI: https://doi.org/10.1088/1757-899X/368/1/012049

Dirkes R, Neubauer PR, Rabenhorst J. (2021). Pressed Sap from Oil Palm (Elaeis guineensis) Trunks: a Revolutionary Growth Medium for the Biotechnological Industry. Biofuels, Bioproducts and Biorefining, 15, 931–44. https://doi.org/10.1002/bbb.2201 DOI: https://doi.org/10.1002/bbb.2201

OECD/FAO. (2018). OECD FAO Agricultural Outlook 2018 2027 Oilseeds and Oilseed Products. 127–38. https://doi.org/10.1787/agr_outlook-2018-7-en DOI: https://doi.org/10.1787/agr_outlook-2018-7-en

Hossain MA, Jewaratnam J, Ganesan P. (2016). Prospect of Hydrogen Production from Oil Palm Biomass by Thermochemical Process – A Review. International Journal of Hydrogen Energy, Elsevier Ltd. 41, 16637–55. https://doi.org/10.1016/j.ijhydene.2016.07.104 DOI: https://doi.org/10.1016/j.ijhydene.2016.07.104

Wan Omar WNN, Amin NAS. (2016). Multi Response Optimization of Oil Palm Frond Pretreatment By Ozonolysis. Industrial Crops and Products, Elsevier B.V. 85, 389–402. https://doi.org/10.1016/j.indcrop.2016.01.027 DOI: https://doi.org/10.1016/j.indcrop.2016.01.027

Travaini R, Martín-Juárez J, Lorenzo-Hernando A, Bolado-Rodríguez S. (2016). Ozonolysis: An Advantageous Pretreatment for Lignocellulosic Biomass Revisited. Bioresource Technology, Elsevier Ltd. 199, 2–12. https://doi.org/10.1016/j.biortech.2015.08.143 DOI: https://doi.org/10.1016/j.biortech.2015.08.143

Kabir G, Mohd Din AT, Hameed BH. (2017). Pyrolysis of Oil Palm Mesocarp Fiber and Palm Frond in a Slow-Heating Fixed-Bed Reactor: A Comparative Study. Bioresource Technology, Elsevier Ltd. 241, 563–72. https://doi.org/10.1016/j.biortech.2017.05.180 DOI: https://doi.org/10.1016/j.biortech.2017.05.180

Okolie JA, Epelle EI, Tabat ME, Orivri U, Amenaghawon AN, Okoye PU. (2022). Waste Biomass Valorization for The Production of Biofuels and Value-Added Products: A Comprehensive Review of Thermochemical, Biological and Integrated Processes. Process Safety and Environmental Protection, Elsevier. 159, 323–44. https://doi.org/10.1016/j.psep.2021.12.049 DOI: https://doi.org/10.1016/j.psep.2021.12.049

Lee KM, Quek JD, Tey WY, Lim S, Kang HS, Quen LK. (2022). Biomass Valorization by Integrating Ultrasonication and Deep Eutectic Solvents: Delignification, Cellulose Digestibility and Solvent Reuse. Biochemical Engineering Journal, Elsevier B.V. 187, 108587. https://doi.org/10.1016/j.bej.2022.108587 DOI: https://doi.org/10.1016/j.bej.2022.108587

Baksi S, Saha S, Birgen C, Sarkar U, Preisig HA, Markussen S. (2019). Valorization of Lignocellulosic Waste (Crotalaria juncea) Using Alkaline Peroxide Pretreatment under Different Process Conditions: An Optimization Study on Separation of Lignin, Cellulose, and Hemicellulose. Journal of Natural Fibers, Taylor & Francis. 16, 662–76. https://doi.org/10.1080/15440478.2018.1431998 DOI: https://doi.org/10.1080/15440478.2018.1431998

Chauhan R, Dinesh GK, Alawa B, Chakma S. (2021). A critical Analysis of Sono-Hybrid Advanced Oxidation Process of Ferrioxalate System for Degradation of Recalcitrant Pollutants. Chemosphere, Elsevier Ltd. 277, 130324. https://doi.org/10.1016/j.chemosphere.2021.130324 DOI: https://doi.org/10.1016/j.chemosphere.2021.130324

Li S, Yang Y, Zheng H, Zheng Y, Jing T, Ma J. et al. (2022). Advanced Oxidation Process Based on Hydroxyl and Sulfate Radicals to Degrade Refractory Organic Pollutants in Landfill Leachate. Chemosphere, Elsevier Ltd. 297, 134214. https://doi.org/10.1016/j.chemosphere.2022.134214 DOI: https://doi.org/10.1016/j.chemosphere.2022.134214

Heebner A, Abbassi B. (2022). Electrolysis Catalyzed Ozonation for Advanced Wastewater Treatment. Journal of Water Process Engineering, Elsevier Ltd. 46, 102638. https://doi.org/10.1016/j.jwpe.2022.102638 DOI: https://doi.org/10.1016/j.jwpe.2022.102638

Nagels M, Verhoeven B, Larché N, Dewil R, Rossi B. (2022). Corrosion Behaviour of Lean Duplex Stainless Steel in Advanced Oxidation Process (AOP) Based Wastewater Treatment Plants. Engineering Failure Analysis, 136. https://doi.org/10.1016/j.engfailanal.2022.106170 DOI: https://doi.org/10.1016/j.engfailanal.2022.106170

Kiyanmehr K, Moussavi G, Mohammadi S, Naddafi K, Giannakis S. (2022). The Efficacy of The VUV/O3 Process Run in A Continuous-Flow Fluidized Bed Reactor for Simultaneous Elimination of Favipiravir and Bacteria in Aqueous Matrices. Chemosphere, Elsevier Ltd. 304, 135307. https://doi.org/10.1016/j.chemosphere.2022.135307 DOI: https://doi.org/10.1016/j.chemosphere.2022.135307

Barrera-Martínez I, Guzmán N, Peña E, Vázquez T, Cerón-Camacho R, Folch J. et al. (2016). Ozonolysis of Alkaline Lignin and Sugarcane Bagasse: Structural Changes and Their Effect on Saccharification. Biomass and Bioenergy, 94, 167–72. https://doi.org/10.1016/j.biombioe.2016.08.010 DOI: https://doi.org/10.1016/j.biombioe.2016.08.010

Suzuki H, Araki S, Yamamoto H. (2015). Evaluation of Advanced Oxidation Processes (AOP) Using O3, UV, and Tio2 for The Degradation of Phenol in Water. Journal of Water Process Engineering, Elsevier Ltd. 7, 54–60. https://doi.org/10.1016/j.jwpe.2015.04.011 DOI: https://doi.org/10.1016/j.jwpe.2015.04.011

Praptyana IR, Budiyono. (2022). Biohydrogen Production from Wood Dust Mahogany (Swietenia Mahagony) By Dark Fermentation Using Enterobacter Aerogenes: Effect of Ozone Pretreatment Time and Ph. Materials Today: Proceedings, Elsevier Ltd. 63, S203–9. https://doi.org/10.1016/j.matpr.2022.02.406 DOI: https://doi.org/10.1016/j.matpr.2022.02.406

Hassaan MA, Nemr AEl, Elkatory MR, Eleryan A, Ragab S, Sikaily AEl et al. (2021). Enhancement of Biogas Production from Macroalgae Ulva Latuca Via Ozonation Pretreatment. Energies, 14, 1–16. https://doi.org/10.3390/en14061703 DOI: https://doi.org/10.3390/en14061703

Heidari Z, Pelalak R, Eshaghi MR, Pishnamazi M, Rezakazemi M, Aminabhavi TM. et al. (2022). A New Insight Into Catalytic Ozonation of Sulfasalazine Antibiotic by Plasma-Treated Limonite Nanostructures: Experimental, Modeling and Mechanism. Chemical Engineering Journal, Elsevier B.V. 428, 131230. https://doi.org/10.1016/j.cej.2021.131230 DOI: https://doi.org/10.1016/j.cej.2021.131230

Ngo Thi TD, Nguyen LH, Nguyen XH, Phung HV, The Vinh TH, Van Viet P et al. (2022). Enhanced Heterogeneous Photocatalytic Perozone Degradation of Amoxicillin by ZnO Modified TiO2 Nanocomposites under Visible Light Irradiation. Materials Science in Semiconductor Processing, Elsevier Ltd. 142, 106456. https://doi.org/10.1016/j.mssp.2022.106456 DOI: https://doi.org/10.1016/j.mssp.2022.106456

Barik AJ, Gogate PR. (2018). Hybrid Treatment Strategies for 2,4,6-Trichlorophenol Degradation Based on Combination of Hydrodynamic Cavitation and AOPs. Ultrasonics Sonochemistry, Elsevier. 40, 383–94. https://doi.org/10.1016/j.ultsonch.2017.07.029 DOI: https://doi.org/10.1016/j.ultsonch.2017.07.029

Ran J, Duan H, Srinivasakannan C, Yao J, Yin S, Zhang L. (2022). Effective Removal of Organics from Bayer Liquor Through Combined Sonolysis and Ozonation: Kinetics and Mechanism. Ultrasonics Sonochemistry, Elsevier B.V. 88, 106106. https://doi.org/10.1016/j.ultsonch.2022.106106 DOI: https://doi.org/10.1016/j.ultsonch.2022.106106

Fan X, Cao T, Yu X, Wang Y, Xiao X, Li F et al. (2020). The Evolutionary Behavior of Chromophoric Brown Carbon During Ozone Aging of Fine Particles from Biomass Burning. Atmospheric Chemistry and Physics, 20, 4593–605. https://doi.org/10.5194/acp-20-4593-2020 DOI: https://doi.org/10.5194/acp-20-4593-2020

Abdurahman MH, Abdullah AZ. (2020). Mechanism and Reaction Kinetic of Hybrid Ozonation-Ultrasonication Treatment for Intensified Degradation of Emerging Organic Contaminants in Water: A Critical Review. Chemical Engineering and Processing - Process Intensification, Elsevier. 154, 108047. https://doi.org/10.1016/j.cep.2020.108047 DOI: https://doi.org/10.1016/j.cep.2020.108047

Shen Y, Xu Q, Wei R, Ma J, Wang Y. (2017). Mechanism and Dynamic Study of Reactive Red X-3B Dye Degradation By Ultrasonic-Assisted Ozone Oxidation Process. Ultrasonics Sonochemistry, Elsevier B.V. 38, 681–92. https://doi.org/10.1016/j.ultsonch.2016.08.006 DOI: https://doi.org/10.1016/j.ultsonch.2016.08.006

Weavers LK, Hoffmann MR. (1998). Sonolytic Decomposition of Ozone in Aqueous Solution: Mass Transfer Effects. Environmental Science and Technology, 32, 3941–7. https://doi.org/10.1021/es980620o DOI: https://doi.org/10.1021/es980620o

Candido RG, Gonçalves AR. (2019). Evaluation of Two Different Applications for Cellulose Isolated from Sugarcane Bagasse in a Biorefinery Concept. Industrial Crops and Products, 142. https://doi.org/10.1016/j.indcrop.2019.111616 DOI: https://doi.org/10.1016/j.indcrop.2019.111616

Montgomery. (1991). Debris Flow Hazard Mitigation for Colluvium-Filled Swales. DOI: https://doi.org/10.2113/gseegeosci.xxviii.3.303

Dagnino EP, Felissia FE, Chamorro E, Area MC. (2017). Optimization of The Soda-Ethanol Delignification Stage for a Rice Husk Biorefinery. Industrial Crops and Products, Elsevier B.V. 97, 156–65. https://doi.org/10.1016/j.indcrop.2016.12.016 DOI: https://doi.org/10.1016/j.indcrop.2016.12.016

Wu Y, Yao S, Narale BA, Shanmugam A, Mettu S, Ashokkumar M. (2022). Ultrasonic Processing of Food Waste to Generate Value-Added Products. Foods, 11. https://doi.org/10.3390/foods11142035 DOI: https://doi.org/10.3390/foods11142035

Segal L, Creely JJ, Martin AE, Conrad CM. (1959). An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal, 29, 786–94. https://doi.org/10.1177/004051755902901003 DOI: https://doi.org/10.1177/004051755902901003

Vanholme R, Morreel K, Ralph J, Boerjan W. (2008). Lignin Engineering. Current Opinion in Plant Biology, 11, 278–85. https://doi.org/10.1016/j.pbi.2008.03.005 DOI: https://doi.org/10.1016/j.pbi.2008.03.005

Anuar TATY, Ariffin H, Norrrahim MNF, Hassan MA. (2017). Factors Affecting Spinnability of Oil Palm Mesocarp Fiber Cellulose Solution for The Production of Microfiber. BioResources, 12, 715–34. https://doi.org/10.15376/biores.12.1.715-734 DOI: https://doi.org/10.15376/biores.12.1.715-734

Megashah LN, Ariffin H, Zakaria MR, Ando Y. (2018). Characteristics of Cellulose from Oil Palm Mesocarp Fibres Extracted by Multi-Step Pretreatment Methods. IOP Conference Series: Materials Science and Engineering, 368. https://doi.org/10.1088/1757-899X/368/1/012001 DOI: https://doi.org/10.1088/1757-899X/368/1/012001

Rizal NFAA, Ibrahim MF, Zakaria MR, Bahrin EK, Abd-Aziz S, Hassan MA. (2018). Combination of Superheated Steam with Laccase Pretreatment Together with Size Reduction to Enhance Enzymatic Hydrolysis of Oil Palm Biomass. Molecules, 23. https://doi.org/10.3390/molecules23040811 DOI: https://doi.org/10.3390/molecules23040811

Azlan N, Mohd, Lin C, Gan S, Basyaruddin M, Rahman A. (2022). Materials Today?: Proceedings Effectiveness of Various Solvents In The Microwave-Assisted Extraction of Cellulose from Oil Palm Mesocarp Fiber. Materials Today: Proceedings, Elsevier Ltd. https://doi.org/10.1016/j.matpr.2021.12.086 DOI: https://doi.org/10.1016/j.matpr.2021.12.086

Olughu, Onu Onu, Tabil, Lope G, Dumonceaux, Dan, T. (2021). Ultrasonic Delignification and Microstructural Characterization of Switchgrass (In Indonesia).

Mukherjee A, Banerjee S, Halder G. (2018). Parametric Optimization of Delignification of Rice Straw Through Central Composite Design Approach Towards Application in Grafting. Journal of Advanced Research, Cairo University. 14, 11–23. https://doi.org/10.1016/j.jare.2018.05.004 DOI: https://doi.org/10.1016/j.jare.2018.05.004

Prasetyaningrum A, Ratnawati R, Jos B. (2017). Optimization of the Ozonation Process on Depolymerization of ?-Carrageenan with the Response Surface Method (In Indonesia). Reaktor, 17, 1. https://doi.org/10.14710/reaktor.17.1.1-8 DOI: https://doi.org/10.14710/reaktor.17.1.1-8

Mostapha M, Azamkamal F, Mohd Salleh K, Amran UA, Gan S, Zakaria S. (2021). Parameter Optimization for Esterified Palm Oil Empty Fruit Bunches (EFB) Cellulose (In Indonesia). Sains Malaysiana, 50, 3719–32. https://doi.org/10.17576/jsm-2021-5012-21 DOI: https://doi.org/10.17576/jsm-2021-5012-21

Ramadoss G, Muthukumar K. (2016). Mechanistic Study on Ultrasound Assisted Pretreatment of Sugarcane Bagasse Using Metal Salt With Hydrogen Peroxide for Bioethanol Production. Ultrasonics Sonochemistry, 28, 207–17. https://doi.org/10.1016/j.ultsonch.2015.07.006 DOI: https://doi.org/10.1016/j.ultsonch.2015.07.006

Pujokaroni AS, Ohtani Y, Ichiura H. (2020). Ozone Treatment for Improving The Solubility of Cellulose Extracted from Palm Fiber. Journal of Applied Polymer Science, 138, 1–11. https://doi.org/10.1002/app.49610 DOI: https://doi.org/10.1002/app.49610

Cubero MTG, Palacín LG, González-Benito G, Bolado S, Lucas S, Coca M. (2012). An Analysis of Lignin Removal in A Fixed Bed Reactor By Reaction of Cereal Straws With Ozone. Bioresource Technology, 107, 229–34. https://doi.org/10.1016/j.biortech.2011.12.010 DOI: https://doi.org/10.1016/j.biortech.2011.12.010

Ruan XC, Liu MY, Zeng QF, Ding YH. (2010). Degradation and Decolorization of Reactive Red X-3B Aqueous Solution By Ozone Integrated with Internal Micro-Electrolysisa. Separation and Purification Technology, Elsevier B.V. 74, 195–201. https://doi.org/10.1016/j.seppur.2010.06.005 DOI: https://doi.org/10.1016/j.seppur.2010.06.005

Chiha M, Hamdaoui O, Baup S, Gondrexon N. (2011). Sonolytic Degradation of Endocrine Disrupting Chemical 4-Cumylphenol in Water. Ultrasonics Sonochemistry, Elsevier B.V. 18, 943–50. https://doi.org/10.1016/j.ultsonch.2010.12.014 DOI: https://doi.org/10.1016/j.ultsonch.2010.12.014

G?gol M, Przyjazny A, Boczkaj G. (2018). Effective Method of Treatment of Industrial Effluents under Basic pH Conditions using Acoustic Cavitation – A Comprehensive Comparison with Hydrodynamic Cavitation Processes. Chemical Engineering and Processing - Process Intensification, 128, 103–13. https://doi.org/10.1016/j.cep.2018.04.010 DOI: https://doi.org/10.1016/j.cep.2018.04.010

Wang T, Le T, Hu J, Ravindra AV, Xv H, Zhang L et al. (2022). Ultrasonic-Assisted Ozone Degradation of Organic Pollutants in Industrial Sulfuric Acid. Ultrasonics Sonochemistry, Elsevier B.V. 86, 106043. https://doi.org/10.1016/j.ultsonch.2022.106043 DOI: https://doi.org/10.1016/j.ultsonch.2022.106043

Xiong X, Wang B, Zhu W, Tian K, Zhang H. (2019). A Review on Ultrasonic Catalytic Microbubbles Ozonation Processes: Properties, Hydroxyl Radicals Generation Pathway and Potential in Application. Catalysts, 9. https://doi.org/10.3390/catal9010010 DOI: https://doi.org/10.3390/catal9010010

Zhao L, Ma W, Ma J, Wen G, Liu Q. (2015). Relationship Between Acceleration of Hydroxyl Radical Initiation and Increase of Multiple-Ultrasonic Field Amount in the Process of Ultrasound Catalytic Ozonation for Degradation of Nitrobenzene in Aqueous Solution. Ultrasonics Sonochemistry, Elsevier B.V. 22, 198–204. https://doi.org/10.1016/j.ultsonch.2014.07.014 DOI: https://doi.org/10.1016/j.ultsonch.2014.07.014

Arantes V, Jellison J, Goodell B. (2012). Peculiarities of Brown-rot Fungi and Biochemical Fenton Reaction with Regard to Their Potential as a Model for Bioprocessing Biomass. Applied Microbiology and Biotechnology, 94, 323–38. https://doi.org/10.1007/s00253-012-3954-y DOI: https://doi.org/10.1007/s00253-012-3954-y

Maqsood HS, Bashir U, Wiener J, Puchalski M, Sztajnowski S, Militky J. (2017). Ozone Treatment of Jute Fibers. Cellulose, Springer Netherlands. 24, 1543–53. https://doi.org/10.1007/s10570-016-1164-y DOI: https://doi.org/10.1007/s10570-016-1164-y

Martínez AT, Rencoret J, Nieto L, Jiménez-Barbero J, Gutiérrez A, Del Río JC. (2011). Selective Lignin and Polysaccharide Removal in Natural Fungal Decay of Wood as Evidenced by in Situ Structural Analyses. Environmental Microbiology, 13, 96–107. https://doi.org/10.1111/j.1462-2920.2010.02312.x DOI: https://doi.org/10.1111/j.1462-2920.2010.02312.x

Chieng BW, Lee SH, Ibrahim NA, Then YY, Loo YY. (2017). Isolation And Characterization Of Cellulose Nanocrystals From Oil Palm Mesocarp Fiber. Polymers, 9, 1–11. https://doi.org/10.3390/polym9080355 DOI: https://doi.org/10.3390/polym9080355

Okahisa Y, Furukawa Y, Ishimoto K, Narita C, Intharapichai K, Ohara H. (2018). Comparison of Cellulose Nanofiber Properties Produced from Different Parts of The Oil Palm Tree. Carbohydrate Polymers, 198, 313–9. https://doi.org/10.1016/j.carbpol.2018.06.089 DOI: https://doi.org/10.1016/j.carbpol.2018.06.089

Rosli NA, Ahmad I, Abdullah I. (2013). Isolation and Characterization of Cellulose Nanocrystals from Agave Angustifolia Fibre. BioResources, 8, 1893–908. https://doi.org/10.15376/biores.8.2.1893-1908 DOI: https://doi.org/10.15376/biores.8.2.1893-1908

Bogolitsyn K, Parshina A, Aleshina L. (2020). Structural Features of Brown Algae Cellulose. Cellulose, Springer Netherlands. 27, 9787–800. https://doi.org/10.1007/s10570-020-03485-z DOI: https://doi.org/10.1007/s10570-020-03485-z

Gonzalez M, Pereira-Rojas J, Villanueva I, Agüero B, Silva I, Velasquez I et al. (2022). Preparation and Characterization of Cellulose Fibers from Meghatyrsus Maximus: Applications in its Chemical Derivatives. Carbohydrate Polymers, Elsevier Ltd. 296, 119918. https://doi.org/10.1016/j.carbpol.2022.119918 DOI: https://doi.org/10.1016/j.carbpol.2022.119918

Reddy KO, Maheswari CU, Dhlamini MS, Mothudi BM, Kommula VP, Zhang J et al. (2018). Extraction and Characterization of Cellulose Single Fibers from Native African Napier Grass. Carbohydrate Polymers, Elsevier Ltd. 188, 85–91. https://doi.org/10.1016/j.carbpol.2018.01.110 DOI: https://doi.org/10.1016/j.carbpol.2018.01.110

Zhang K, Si M, Liu D, Zhuo S, Liu M, Liu H, et al. (2018). A Bionic System with Fenton Reaction and Bacteria as A Model for Bioprocessing Lignocellulosic Biomass. Biotechnology for Biofuels, BioMed Central. 11, 1–14. https://doi.org/10.1186/s13068-018-1035-x DOI: https://doi.org/10.1186/s13068-018-1035-x

Valladares-Diestra KK, Porto de Souza Vandenberghe L, Zevallos Torres LA, Nishida VS, Zandoná Filho A, Woiciechowski AL, et al. (2021). Imidazole Green Solvent Pre-Treatment as A Strategy for Second-Generation Bioethanol Production from Sugarcane Bagasse. Chemical Engineering Journal, 420. https://doi.org/10.1016/j.cej.2020.127708 DOI: https://doi.org/10.1016/j.cej.2020.127708

Rasid NSA, Zainol MM, Amin NAS. (2021). Synthesis and Characterization of Carboxymethyl Cellulose Derived from Empty Fruit Bunch. Sains Malaysiana, 50, 2523–35. https://doi.org/10.17576/jsm-2021-5009-03 DOI: https://doi.org/10.17576/jsm-2021-5009-03

Zulnazri Adha, muhammad ikhwanul, Dewi R. (2022). Experimental Study of Cellulose Extraction from Oil Palm Empty Fruits Bunches. 7–14. https://doi.org/10.31284/j.iptek.2022.v26i1.2

Lu H, Liu S, Shi Y, Chen Q. (2022). Efficient Delignification of Sugarcane Bagasse by Fenton Oxidation Coupled with Ultrasound-Assisted NaOH for Biotransformation from Agaricus Sinodeliciosus Var. Chaidam. Chemical Engineering Journal, Elsevier B.V. 448, 137719. https://doi.org/10.1016/j.cej.2022.137719 DOI: https://doi.org/10.1016/j.cej.2022.137719

Ren X, Zhang X, Liang Q, Hou T, Zhou H. (2017). Effects of Different Working Modes of Ultrasound on Structural Characteristics of Zein and ACE Inhibitory Activity of Hydrolysates. Journal of Food Quality, 2017. https://doi.org/10.1155/2017/7896037 DOI: https://doi.org/10.1155/2017/7896037

Downloads

Published

2023-07-04

How to Cite

Didi Dwi Anggoro, Kusuma Dewi, I., Luqman Buchori, & Aji Prasetyaningrum. (2023). PARAMETRIC OPTIMIZATION OF OIL PALM MESOCARP FIBER VALORIZATION WITH HYBRID OZONATION-ULTRASONIC PRETREATMENT METHOD. IIUM Engineering Journal, 24(2), 45–66. https://doi.org/10.31436/iiumej.v24i2.2717

Issue

Section

Chemical and Biotechnology Engineering