OPTIMAL CLUSTERING OF WIRELESS MULTIPATHS BY UNIFORM MANIFOLD APPROXIMATION AND PROJECTION-ASSISTED DBSCAN
DOI:
https://doi.org/10.31436/iiumej.v25i1.2716Keywords:
Multipath clustering, Dimensionality reduction, channel modelingAbstract
Uniform Manifold Approximation and Projection (UMAP) is applied to reduce the multipath dataset into 2-dimensions (2D) for visualization and clustering. Density-based spatial clustering of applications with noise (DBSCAN) is used as the clustering approach and the performance of different search radius epsilon ?. The proposed approach was used to cluster semi-urban scenarios of the COST2100 channel model (C2CM), which has many multipath components (MPCs). The approach is validated by comparing the clustering results to the ground truth and computing the Adjusted Rand Index (ARI) and the cluster-wise Jaccard index . The results suggest that lowering the search radius up to 0.3 achieved a median below 0.6 in the multiple-links scenarios due to the overlapping nature of clusters. Nevertheless, the median values above 0.7 and 0.8 for the ARI and Jaccard index , respectively for the single-link scenarios indicate the robsutness of the approach.
ABSTRAK: Anggaran Manifold Seragam dan Unjuran (UMAP) 2-dimensi (2D) digunakan sebagai penggambaran dan pengelasan bagi mengurangkan set data pelbagai laluan. Aplikasi pengelasan ruangan bersama bunyi berdasarkan ketumpatan (DBSCAN) ini mengguna pakai pendekatan pengelasan dan prestasi pelbagai radius carian epsilon ?. Pendekatan yang dicadangkan ini digunakan bagi pengelasan senario separa-bandar model saluran COST2100 (C2CM), di mana komponen ini mempunyai banyak laluan (MPCs). Pendekatan ini disahkan dengan membandingkan dapatan pengelasan kepada kesahihan lapangan, pengiraan Indeks Rawak Terlaras (ARI) dan indeks Jaccard pengelasan ?. Dapatan menunjukkan pengurangan radius carian sehingga 0.3 dicapai pada median di bawah 0.6 dalam senario pelbagai pautan disebabkan oleh sifat pertindihan pengelasan. Walau bagaimanapun, nilai median di atas 0.7 dan 0.8 untuk ARI dan indeks Jaccard ?, masing-masing menunjukkan kaedah ini berkesan bagi senario pautan-tunggal.
Downloads
Metrics
References
Bonek E. (2013) MIMO propagation channel modeling. 7th European Conference on Antennas and Propagation (EuCAP), pp. 2488-2492.
Czink N, Cera P, Salo J, Bonek E, Nuutinen J, Ylitalo J. (2006) A framework for automatic clustering of parametric mimo channel data including path powers. In Proceedings IEEE Vehicular Technology Conference, pp. 1-5. https://doi.org/10.1109/VTCF.2006.35. DOI: https://doi.org/10.1109/VTCF.2006.35
Czink N, Cera P, Salo J, Bonek E, Nuutinen J, Ylitalo J. (2006) Improving clustering performance using multipath component distance. Electronics Letters. 42(1): 33-45. https://doi.org/10.1049/el:20063917. DOI: https://doi.org/10.1049/el:20063917
Moayyed MT, Antonescu B, Basagni S. (2019) Clustering algorithms and validation indices for mmwave radio multipath propagation. In Proceedings Wireless Telecommunications Symposium (WTS), pp. 1-7. https://doi.org/10.1109/WTS.2019.8715540. DOI: https://doi.org/10.1109/WTS.2019.8715540
Hu M, Ye Y, He R, Ai B, Huang C, Zhong Z. (2020) A novel power weighted multipath component clustering algorithm based on spectral clustering. In Proceedings IEEE 91st Vehicular Technology Conference (VTC2020-Spring), pp. 1-5. https://doi.org/10.1109/VTC2020-Spring48590.2020.9129206. DOI: https://doi.org/10.1109/VTC2020-Spring48590.2020.9129206
Materum M, Takada J, Ida I, Oishi Y. (2009) Mobile station spatio-temporal multipath clustering of an estimated wideband MIMO double-directional channel of a small urban 4.5 GHz macrocell. EURASIP Journal on Wireless Communications and Networking, 2009: 1-16. https://doi.org/10.1155/2009/804021 DOI: https://doi.org/10.1155/2009/804021
Hanpinitsak P, Saito K, Takada J, Kim M, Materum L. (2017) Multipath clustering and cluster tracking for geometry-based stochastic channel modeling. IEEE Transactions on Antennas and Propagation, 65(11): 6015-6028. https://doi.org/10.1109/TAP.2017.2754417. DOI: https://doi.org/10.1109/TAP.2017.2754417
Li Y, Zhang J, Ma Z, Zhang Y. (2020) Clustering analysis in the wireless propagation channel with a variational gaussian mixture model. IEEE Transactions on Big Data. 6(2): 223-232. https://doi.org/10.1109/TBDATA.2018.2840696. DOI: https://doi.org/10.1109/TBDATA.2018.2840696
Teologo A, Materum L, Blanza J, Hirano T. (2020) Comparative study of k-power means, ant colony optimization, kernel power density-based estimation, and gaussian mixture model for wireless propagation multipath clustering. International Journal of Emerging Trends in Engineering Research. 8(7). https://doi.org/10.30534/ijeter/2020/164872020 DOI: https://doi.org/10.30534/ijeter/2020/164872020
Blanza J, Materum L. (2019) Joint identification of the clustering and cardinality of wireless propagation multipaths. International Journal of Emerging Trends in Engineering Research, 7: 763-767. https://doi.org/10.30534/ijeter/2019/057122019. DOI: https://doi.org/10.30534/ijeter/2019/057122019
Blanza J. Materum L. (2019) Grouping of COST 2100 indoor multipaths using simultaneous clustering and model selection. International Journal of Emerging Trends in Engineering Research 7(8): 197. https://doi.org/10.30534/ijeter/2019/15782019 DOI: https://doi.org/10.30534/ijeter/2019/15782019
Diallo DM, Takada J, Saito K. (2021) .Visualization tool of the urban microcell radio propagation paths. IEICE Communications Express, 10(11): 834-839. https://doi.org/10.1587/comex.2021XBL0128. DOI: https://doi.org/10.1587/comex.2021XBL0128
Hozumi Y, Wang R, Yin C, Wei G-W. (2021) UMAP-assisted K-means clustering of large-scale SARS-CoV-2 mutation datasets. Computers in Biology and Medicine, 131: 104264. https://doi.org/10.1016/j.compbiomed.2021.104264 DOI: https://doi.org/10.1016/j.compbiomed.2021.104264
Gare S, Chel S, Kuruba M, Jana S, Giri L. (2021) Dimension reduction and clustering of single cell calcium spiking: comparison of t-SNE and UMAP. In Proceedings 2021 National Conference on Communications (NCC), pp. 1-6. https://doi.org/10.1109/NCC52529.2021.9530128. DOI: https://doi.org/10.1109/NCC52529.2021.9530128
Varunram TN, Shivaprasad MB, Aishwarya KH, Balraj A, Savish SV, Ullas S. (2021) Analysis of different dimensionality reduction techniques and machine learning algorithms for an intrusion detection system. IEEE 6th International Conference on Computing, Communication and Automation (ICCCA), pp. 237-242. https://doi.org/10.1109/ICCCA52192.2021.9666265. DOI: https://doi.org/10.1109/ICCCA52192.2021.9666265
Liu L, Oestges C, Poutanen J, Haneda K, Vainikainen P, Quitin F, Tufvesson F, Doncker D P. (2012) The COST 2100 MIMO channel model. IEEE Wireless Communications. 19(6): 92-99. https://doi.org/10.1109/MWC.2012.6393523. DOI: https://doi.org/10.1109/MWC.2012.6393523
Blanza J, Teologo A, Materum L. (2019) Datasets for multipath clustering at 285 MHz and 5.3 GHz bands based on COST 2100 MIMO channel model. 2019 International Symposium on Multimedia and Communication Technology (ISMAC), pp. 1-5. https://doi.org/10.1109/ISMAC.2019.8836143. DOI: https://doi.org/10.1109/ISMAC.2019.8836143
McInnes L, Healy J, Melville J. (2018). UMAP: uniform manifold approximation and projection for dimension reduction. ArXiv e-prints. https://doi.org/10.48550/arXiv.1802.03426 DOI: https://doi.org/10.21105/joss.00861
Pealat C, Bouleux G, Cheutet V. (2020) Improved time-series clustering with UMAP dimension reduction method. 2020 25th International Conference on Pattern Recognition (ICPR), pp. 5658-5665. https://doi.org/10.1109/ICPR48806.2021.9412261. DOI: https://doi.org/10.1109/ICPR48806.2021.9412261
A Detailed Introduction to K-Nearest Neighbor (KNN) Algorithm [https://saravananthirumuruganathan.wordpress.com/2010/05/17/a-detailed-introduction-to-k-nearest-neighbor-knn-algorithm/]
Meehan C, Ebrahimian J, Moore W, Meehan S. (2022) Uniform manifold approximation and projection (UMAP). [http://www.mathworks.com/matlabcentral/fileexchange/71902]
Steinbauer M, Ozcelik H, Hofstetter H, Mecklenbrauker C F, Bonek E. (2002) How to quantify multipath separation. IEICE Transactions on Electronics, 85(3): 552-557.
Ester M, Kriegel H -P, SanderJ, Xu X. (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pp. 226-231.
Schubert E, Sander J, Ester M, Kriegel HP, Xu X. (2017) Dbscan revisited, revisited: why and how you should (still) use dbscan. ACM Trans Database Syst (TODS), 42(3): 1-21. https://doi.org/10.1145/3068335. DOI: https://doi.org/10.1145/3068335
Fahad A, Alshatri N, Tari Z, Alamri A, Khalil I, Zomaya AY, Foufou S, Bouras A. (2014) A survey of clustering algorithms for big data: Taxonomy and empirical analysis. IEEE Transactions on Emerging Topics in Computing, 2(3): 267-279. https://doi.org/10.1109/TETC.2014.2330519. DOI: https://doi.org/10.1109/TETC.2014.2330519
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.