TREBLE SEARCH OPTIMIZER: A STOCHASTIC OPTIMIZATION TO OVERCOME BOTH UNIMODAL AND MULTIMODAL PROBLEMS
DOI:
https://doi.org/10.31436/iiumej.v24i2.2700Keywords:
optimization, Metaheuristics, swarm intelligence, unimodal, multimodalAbstract
Today, many metaheuristics have used metaphors as their inspiration and baseline for novelty. It makes the novel strategy of these metaheuristics difficult to investigate. Moreover, many metaheuristics use high iteration or swarm size in their first introduction. Based on this consideration, this work proposes a new metaheuristic free from metaphor. This metaheuristic is called treble search optimizer (TSO), representing its main concept in performing three searches performed by each member in each iteration. These three searches consist of two directed searches and one random search. Several seeds are generated from each search. Then, these searches are compared with each other to find the best seed that might substitute the current corresponding member. TSO is also designed to overcome the optimization problem in the low iteration or swarm size circumstance. In this paper, TSO is challenged to overcome the 23 classic optimization functions. In this experiment, TSO is compared with five shortcoming metaheuristics: slime mould algorithm (SMA), hybrid pelican komodo algorithm (HPKA), mixed leader-based optimizer (MLBO), golden search optimizer (GSO), and total interaction algorithm (TIA). The result shows that TSO performs effectively and outperforms these five metaheuristics by making better fitness scores than SMA, HPKA, MLBO, GSO, and TIA in overcoming 21, 21, 23, 23, and 17 functions, consecutively. The result also indicates that TSO performs effectively in overcoming unimodal and multimodal problems in the low iteration and swarm size.
ABSTRAK: Dewasa ini, terdapat ramai metaheuristik menggunakan metafora sebagai inspirasi dan garis dasar pembaharuan. Ini menyebabkan strategi baharu metaheuristik ini susah untuk dikaji. Tambahan, ramai metaheuristik menggunakan ulangan berulang atau saiz kerumunan dalam pengenalan mereka. Berdasarkan penilaian ini, kajian ini mencadangkan metaheuristk baharu bebas metafora. Metaheuristik ini dipanggil pengoptimum pencarian ganda tiga (TSO), mewakilkan konsep utama dalam pemilihan tiga pencarian yang dilakukan oleh setiap ahli dalam setiap ulangan. Ketiga-tiga carian ini terdiri daripada dua pencarian terarah dan satu pencarian rawak. Beberapa benih dihasilkan dalam setiap carian. Kemudian, carian ini dibandingkan antara satu sama lain bagi mencari benih terbaik yang mungkin berpotensi menggantikan ahli yang sedang digunakan. TSO juga direka bagi mengatasi masalah pengoptimuman dalam ulangan rendah atau lingkungan saiz kerumunan. Kajian ini TSO dicabar bagi mengatasi 23 fungsi pengoptimuman klasik. Eksperimen ini TSO dibandingkan dengan lima kekurangan metaheuristik: algoritma acuan lendir (SMA), algorithma hibrid komodo burung undan (HPKA), Pengoptimum Campuran berdasarkan-Ketua (MLBO), Pengoptimuman Carian Emas (GSO), dan algoritma jumlah interaksi (TIA). Dapatan kajian menunjukkan TSO berkesan menghasilkan dan lebih baik daripada kelima-lima metaheuristik dengan menghasilkan pemarkahan padanan terbaik berbanding SMA, HPKA, MLBO, GSO, dan TIA dalam mengatasi fungsi 21, 21, 23, 23, dan 17, secara berurutan. Dapatan kajian juga menunjukkan TSO turut berperanan efektif dalam mengatasi masalah modal tunggal dan modal ganda dalam iterasi rendah dan saiz kerumunan.
Downloads
Metrics
References
Ramezanpour MR, Farajpour M. (2022) Application of artificial neural networks and genetic algorithm to predict and optimize greenhouse banana fruit yield through nitrogen, potassium and magnesium. PLoS ONE, 17(2): e0264040. https://doi.org/10.1371/journal.pone.0264040. DOI: https://doi.org/10.1371/journal.pone.0264040
Thammachantuek I, Ketcham M. (2022) Path planning for autonomous mobile robots using multi-objective evolutionary particle swarm optimization. PLoS ONE, 17(8): e0271924. https://doi.org/10.1371/journal.pone.0271924. DOI: https://doi.org/10.1371/journal.pone.0271924
Sivakumar R, Angayarkanni SA, Ramana RYV, Sadiq AS. (2022) Traffic flow forecasting using natural selection based hybrid bald eagle search-grey wolf optimization algorithm. PLoS ONE, 17(9): e0275104. https://doi.org/10.1371/journal.pone.0275104. DOI: https://doi.org/10.1371/journal.pone.0275104
Hoballah A, Azmy AM. (2023) Constrained economic dispatch following generation outage for hot spinning reserve allocation using hybrid grey wolf optimizer. Alexandria Engineering Journal, 62: 169-180. https://doi.org/10.1016/j.aej.2022.07.033. DOI: https://doi.org/10.1016/j.aej.2022.07.033
Sowmya R, Sankaranarayanan V. (2022) Optimal scheduling of electric vehicle charging at geographically dispersed charging stations with multiple charging piles. International Journal of Intelligent Transportation Systems Research, 20: 672-695. https://doi.org/10.1007/s13177-022-00316-2. DOI: https://doi.org/10.1007/s13177-022-00316-2
Suyanto, Ariyanto AA, Ariyanto AF. (2022) Komodo mlipir algorithm. Applied Soft Computing, 114: 108043. https://doi.org/10.1016/j.asoc.2021.108043. DOI: https://doi.org/10.1016/j.asoc.2021.108043
Dehghani M, Hubalovsky S, Trojovsky P. (2021) Nortehrn goshawk optimization: a new swarm-based algorithm for solving optimization problems. IEEE Access, 9: 162059-162080. doi: 10.1109/ACCESS.2021.3133286. DOI: https://doi.org/10.1109/ACCESS.2021.3133286
Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH. (2020) Marine predators algorithm: a nature-inspired metaheuristic. Expert Systems with Applications, 152: 113377. https://doi.org/10.1016/j.eswa.2020.113377. DOI: https://doi.org/10.1016/j.eswa.2020.113377
Kusuma PD, Dinimaharawati A. (2022) Hybrid pelican komodo algorithm. International Journal of Advanced Computer Science and Applications, 13(6): 46-55. https://dx.doi.org/10.14569/IJACSA.2022.0130607. DOI: https://doi.org/10.14569/IJACSA.2022.0130607
Dehghani M, Montazeri Z, Trojovska E, Trojovsky P. (2023) Coati optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems. Knowledge-Based Systems, 259: 110011. https://doi.org/10.1016/j.knosys.2022.110011. DOI: https://doi.org/10.1016/j.knosys.2022.110011
Akbari MA, Zare M, Azizipanah-abarghooee R, Mirjalili S, Deriche M. (2022) The cheetah optimizer: a nature-inspired metaheuristic algorithm for large-scale optimization problems. Scientific Reports, 12: 10953. https://doi.org/10.1038/s41598-022-14338-z. DOI: https://doi.org/10.1038/s41598-022-14338-z
Braik MS. (2021) Chameleon swarm algorithm: a bio-inspired optimizer for solving engineering design problems. Expert Systems with Applications, 174: 114685. https://doi.org/10.1016/j.eswa.2021.114685. DOI: https://doi.org/10.1016/j.eswa.2021.114685
Zeidabadi FA, Doumari SA, Dehghani M, Malik OP. (2021) MLBO: mixed leader based optimizer for solving optimization problems. International Journal of Intelligent Engineering and Systems, 14(4): 472-479. doi: 10.22266/ijies2021.0831.41. DOI: https://doi.org/10.22266/ijies2021.0831.41
Zeidabadi FA, Dehghani M, Malik OP. (2021) RSLBO: random selected leader based optimizer. International Journal of Intelligent Engineering and Systems, 14(5): 529-538.
doi: 10.22266/ijies2021.1031.46. DOI: https://doi.org/10.22266/ijies2021.1031.46
Dehghani M, Trojovsky P. (2022) Hybrid leader based optimization: a new stochastic optimization algorithm for overcoming optimization applications. Scientific Reports, 12: 5549. https://doi.org/10.1038/s41598-022-09514-0. DOI: https://doi.org/10.1038/s41598-022-09514-0
Kusuma PD, Novianty A. (2023) Total interaction algorithm: a metaheuristic in which each agent interacts with all other agents. International Journal of Intelligent Engineering and Systems, 16(1): 224-234. doi: 10.22266/ijies2023.0228.20. DOI: https://doi.org/10.22266/ijies2023.0228.20
Noroozi M, Mohammadi H, Efatinasab E, Lashgari A, Eslami M, Khan B. (2022) Golden search optimization algorithm. IEEE Access, 10: 37515-37532. https://doi.org/10.1109/ACCESS.2022.3162853. DOI: https://doi.org/10.1109/ACCESS.2022.3162853
Dehghani M, Hubalovsky S, Trojovsky P. (2022) A new optimization algorithm based on average and subtraction of the best and worst members of the population for solving various optimization problems. PeerJ Computer Science, 8: e910.
https://doi.org/10.7717/peerj-cs.910. DOI: https://doi.org/10.7717/peerj-cs.910
Swan J, Adriaensen S, Brownlee AEI, Hammond K, Johnson CG, Kheiri A, Krawiec F, Merelo JJ, Minku LL, Ozcan E, Pappa GL, Garcia-Sanchez P, Sorensen K, Vob S, Wagner M, White DR. (2022) Metaheuristics in the large. European Journal of Operational Research, 297(2): 393-406. https://doi.org/10.1016/j.ejor.2021.05.042. DOI: https://doi.org/10.1016/j.ejor.2021.05.042
Li S, Chen H, Wang M, Heidari AA, Mirjalili S. (2020) Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems, 111: 300-323. https://doi.org/10.1016/j.future.2020.03.055. DOI: https://doi.org/10.1016/j.future.2020.03.055
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.