A COMPARATIVE FINITE ELEMENT ANALYSIS OF REGULAR AND TOPOLOGICALLY OPTIMISED DENTAL IMPLANTS FOR MECHANICAL AND FATIGUE RESPONSES EVALUATION

Authors

DOI:

https://doi.org/10.31436/iiumej.v24i2.2695

Keywords:

Deformation, Dental implant, Fatigue, Finite element analysis, Topology optimisation

Abstract

Topology optimisation is a prominent method to improve the performance of any systems by optimising geometrical factors to save materials without compromising the system functionality. Currently, there is limited published data discussing the topologically optimised dental implants that makes the matter still unclear. This study aimed to evaluate the mechanical and fatigue behaviours of regular and topologically optimised dental implant designs using 3-D FEA. Geometrical models were developed in accordance with ISO 14801 using SolidWorks 2020 before being analysed in ANSYS 18.1. The new implant design was created by topology optimisation analysis. The material properties of all parts were assumed to be isotropic, linearly elastic, and homogenous. Nine different compressive load values ranging from 100 to 500 N were applied on the loading structure as separated cases. The vertical and bottom surfaces of the holder were fully constrained. The results showed that the topologically optimised implant recorded about 12.3% lower implant stress than the regular implant. Both implant designs revealed a comparable displacement result with a percentage difference of only 2.3%. The optimised design was also found to produce longer fatigue life and approximately 12.3% higher safety factor compared to the regular design. The increase in the compressive load value has increased the stress and deformation, whilst decreased the fatigue life and safety factor in both designs. Although it was estimated that the volume of the new implant could be reduced to about 24% of the traditional one, the implant functionality may still be retained or even be improved.

ABSTRAK: Pengoptimuman topologi adalah kaedah utama bagi meningkatkan prestasi mana-mana sistem dengan mengoptimumkan faktor geometri bagi menjimatkan bahan tanpa menjejaskan fungsi utama sistem. Dewasa ini, terdapat kurang data diterbitkan berbincang mengenai implan gigi yang dioptimumkan secara topologi yang menjadikan perkara ini masih tidak jelas. Kajian ini bertujuan bagi menilai perlakuan mekanikal dan kelesuan bagi reka bentuk implant gigi biasa dan yang dioptimumkan secara topologi menggunakan 3-D FEA. Model geometri telah dibangunkan mengikut ISO 14801 menggunakan SolidWorks 2020 sebelum dianalisis dalam ANSYS 18.1.  Reka bentuk implan baharu telah dibuat melalui analisis pengoptimuman topologi. Sifat pada semua bahagian bahan diandaikan sebagai isotropik, keanjalan linear, dan homogen. Sembilan nilai beban mampatan berbeza antara 100 hingga 500 N telah dikenakan pada struktur pembebanan sebagai kes berasingan. Permukaan menegak dan bawah pemegang dikekang sepenuhnya. Keputusan menunjukkan bahawa implan yang dioptimumkan secara topologi merekodkan tegasan implan 12.3% lebih rendah daripada implan biasa. Kedua-dua reka bentuk implan menunjukkan hasil anjakan yang setanding dengan perbezaan peratusan hanyalah 2.3%. Reka bentuk yang dioptimumkan juga didapati menghasilkan hayat kelesuan yang lebih lama dan kira-kira 12.3% faktor keselamatan yang lebih tinggi berbanding reka bentuk biasa. Peningkatan dalam nilai beban mampatan telah meningkatkan tegasan dan perubahan bentuk, sementara mengurangkan hayat kelesuan dan faktor keselamatan dalam kedua-dua reka bentuk. Walaupun dianggarkan bahawa isipadu implan baru boleh dikurangkan kira-kira 24% daripada implan tradisional, fungsi implan masih boleh dikekalkan atau dipertingkatkan.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Gupta Y, Iyer R, Dommeti VK, Nutu E, Rana M, Merdji A, Biswas JK, Roy S. (2020) Design of dental implant using design of experiment and topology optimization: a finite element analysis study. Proc Inst Mech Eng H: J Eng Med., 235(2): 157-166. https://doi.org/10.1177/0954411920967146 DOI: https://doi.org/10.1177/0954411920967146

Agustin-Panadero R, Leon-Martinez R, Labaig-Rueda C, Faus-Lopez J, Sola-Ruiz MF. (2019) Influence of implant-prosthetic connection on peri-implant bone loss: a prospective clinical trial with 2-year follow-up. Int J Oral Maxillofac Implants., 34(4): 963-968. https://doi.org/10.11607/jomi.7168 DOI: https://doi.org/10.11607/jomi.7168

Samieirad S, Mianbandi V, Shiezadeh F, Hosseini-Abrishami M, Tohidi E. (2019) Tapered versus cylindrical implant: which shape inflicts less pain after dental implant surgery? A clinical trial. J Oral Maxillofac Surg., 77(7): 1381-1388. https://doi.org/10.1016/j.joms.2019.02.027 DOI: https://doi.org/10.1016/j.joms.2019.02.027

Bidez MW, Misch CE. (2015) Chapter 5 - Clinical biomechanics in implant dentistry. In Dental Implant Prosthetics. 2nd Edition. St. Louis, Mosby; pp 95-106. DOI: https://doi.org/10.1016/B978-0-323-07845-0.00005-1

Gil J, Sandino C, Cerrolaza M, Pérez R, Herrero-Climent M, Rios-Carrasco B, Rios-Santos JV, Brizuela A. (2022) Influence of bone-level dental implants placement and of cortical thickness on osseointegration: In silico and in vivo analyses. J Clin Med., 11(4): 1027 https://doi.org/10.3390/jcm11041027 DOI: https://doi.org/10.3390/jcm11041027

Chang CL, Chen CS, Hsu ML. (2010) Biomechanical effect of platform switching in implant dentistry: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants., 25(2): 295-304.

Shi L, Li H, Fok AS, Ucer C, Devlin H, Horner K. (2007) Shape optimization of dental implants. Int J Oral Maxillofac Implants., 22(6): 911-20.

Chang C-L, Chen C-S, Huang C-H, Hsu M-L. (2012) Finite element analysis of the dental implant using a topology optimization method. Med Eng Phys., 34(7): 999-1008. https://doi.org/10.1016/j.medengphy.2012.06.004 DOI: https://doi.org/10.1016/j.medengphy.2012.06.004

Seitz KF, Grabe J, Köhne T. (2018) A three-dimensional topology optimization model for tooth-root morphology. Comput Methods Biomech Biomed Engin., 21(2): 177-185. https://doi.org/10.1080/10255842.2018.1431778 DOI: https://doi.org/10.1080/10255842.2018.1431778

Zhong Z-C, Wei S-H, Wang J-P, Feng C-K, Chen C-S, Yu C-H. (2006) Finite element analysis of the lumbar spine with a new cage using a topology optimization method. Med Eng Phys., 28(1): 90-98. https://doi.org/10.1016/j.medengphy.2005.03.007 DOI: https://doi.org/10.1016/j.medengphy.2005.03.007

Zhang K, Cheng G, Xu L. (2019) Topology optimization considering overhang constraint in additive manufacturing. Comput Struct., 212: 86-100. https://doi.org/10.1016/j.compstruc.2018.10.011 DOI: https://doi.org/10.1016/j.compstruc.2018.10.011

Lee H, Jo M, Noh G. (2021) Biomechanical effects of dental implant diameter, connection type, and bone density on microgap formation and fatigue failure: A finite element analysis. Comput Methods Programs Biomed., 200: 105863. https://doi.org/10.1016/j.cmpb.2020.105863 DOI: https://doi.org/10.1016/j.cmpb.2020.105863

Yalç?n M, Kaya B, Laçin N, Ar? E. (2019) Three-dimensional finite element analysis of the effect of endosteal implants with different macro designs on stress distribution in different bone qualities. Int J Oral Maxillofac Implants., 34(3): e43–e50. https://doi.org/10.11607/jomi.7058 DOI: https://doi.org/10.11607/jomi.7058

Bayata F, Yildiz C. (2020) The effects of design parameters on mechanical failure of Ti-6Al-4V implants using finite element analysis. Eng Fail Anal., 110: 104445. https://doi.org/10.1016/j.engfailanal.2020.104445 DOI: https://doi.org/10.1016/j.engfailanal.2020.104445

Yao K-T, Chen C-S, Cheng C-K, Fang H-W, Huang C-H, Kao H-C, Hsu M-L. (2018) Optimization of the conical angle design in conical implant–abutment connections: a pilot study based on the finite element method. J Oral Implantol., 44(1): 26-35. https://doi.org/10.1563/aaid-joi-D-17-00149 DOI: https://doi.org/10.1563/aaid-joi-D-17-00149

Wang K, Geng J, Jones D, Xu W. (2016) Comparison of the fracture resistance of dental implants with different abutment taper angles. Mater Sci Eng C., 63, 164-171. https://doi.org/10.1016/j.msec.2016.02.015 DOI: https://doi.org/10.1016/j.msec.2016.02.015

Zhang X, Mao J, Zhou Y, Ji F, Chen X. (2020) Study on statics and fatigue analysis of dental implants in the descending process of alveolar bone level. Proc Inst Mech Eng H., 0954411920926080. https://doi.org/10.1177/0954411920926080 DOI: https://doi.org/10.1177/0954411920926080

Levartovsky S, Peleg G, Matalon S, Tsesis I, Rosen E. (2022) Maximal bite force measured via digital bite force transducer in subjects with or without dental implants - A pilot study. Appl Sci., 12(3): https://doi.org/10.3390/app12031544 DOI: https://doi.org/10.3390/app12031544

Amruta G, Rajeev S, Gaurang M, Simran M, Mishal Ds, Kunal M. (2022) Comparative evaluation of stress on the peri-implant bone of different densities in mandible restored by various diameter of implants - a finite element analysis. J Electron Sci., 12(11): 161-177.

Satheesh Kumar P, Satheesh KK, John J, Patil G, Patel R. (2013) Force transfer and stress distribution in an implant-supported overdenture retained with a hader bar attachment: a finite element analysis. ISRN Dent., 2013, 369147. https://doi.org/10.1155/2013/369147 DOI: https://doi.org/10.1155/2013/369147

Niroomand MR, Arabbeiki M. (2020) Implant stability in different implantation stages: analysis of various interface conditions. Inform Med Unlocked, 19: 100317. https://doi.org/10.1016/j.imu.2020.100317 DOI: https://doi.org/10.1016/j.imu.2020.100317

Jeng M-D, Lin Y-S, Lin C-L. (2020) Biomechanical evaluation of the effects of implant neck wall thickness and abutment screw size: a 3D nonlinear finite element analysis. Appl Sci., 10(10), 3471: https://doi.org/10.3390/app10103471 DOI: https://doi.org/10.3390/app10103471

Cheng Y-C, Jiang C-P, Lin D-H. (2019) Finite element based optimization design for a one-piece zirconia ceramic dental implant under dynamic loading and fatigue life validation. Struct Multidiscipl Optim., 59(3): 835-849. https://doi.org/10.1007/s00158-018-2104-2 DOI: https://doi.org/10.1007/s00158-018-2104-2

Lawrence AA, Singh N, Davis R, Sahil Ansari M, Tewari YV, Francis V. (2022) Chapter 13 - Topological design optimisation of dental implant. In Optimization of Industrial Systems. 1st Edition. Edited by Panchal D, Tyagi M, Sachdeva A, Pamucar D. Scrivener Publishing LLC. DOI: https://doi.org/10.1002/9781119755074.ch13

Naveau A, Shinmyouzu K, Moore C, Avivi-Arber L, Jokerst J, Koka S. (2019) Etiology and measurement of peri-implant crestal bone loss (CBL). J Clin Med., 8(2): 166. https://doi.org/10.3390/jcm8020166 DOI: https://doi.org/10.3390/jcm8020166

Rudd KD, O'Leary TJ, Stumpf AJ Jr. (1964) Horizontal tooth mobility in carefully screened subjects. Tech Doc Rep US Air Force Syst Command Electron Syst Div, 94: 1-6.

Sekine H, Komiyama Y, Potta H, Yoshida K. (1986) Mobility characteristics and tactile sensitivity of osseointegrated fixture-supporting systems. In Tissue Integration in Oral Maxillofacial Reconstruction. 1st Edition. Edited by Van Steeberghe D. Amsterdam, Excerpta Medica; pp. 326–332.

Downloads

Published

2023-07-04

How to Cite

Ishak, M. I., Daud, R., Bakar, B., & Mohd Noor, S. N. F. (2023). A COMPARATIVE FINITE ELEMENT ANALYSIS OF REGULAR AND TOPOLOGICALLY OPTIMISED DENTAL IMPLANTS FOR MECHANICAL AND FATIGUE RESPONSES EVALUATION. IIUM Engineering Journal, 24(2), 286–300. https://doi.org/10.31436/iiumej.v24i2.2695

Issue

Section

Mechanical and Aerospace Engineering

Funding data