Multi-Objective Mayfly Optimization in Phase Optimization of OFDM

Authors

DOI:

https://doi.org/10.31436/iiumej.v24i1.2625

Keywords:

Exploration, Multi-Objective Mayfly Algorithm, OFDM phase Optimization, Partial Transmit Sequence

Abstract

Communication systems have been used tremendously in recent years which results in the need for high data transmission rates. Orthogonal Frequency Division Multiplexing (OFDM) provides robust performance in frequency selective fading due to high bandwidth efficiency and inter-symbol interference. Various optimization techniques were applied in existing research to increase the efficiency of OFDM in a communication system. The existing research has a limitation of considering a single objective to improve the efficiency of OFDM and also has a local optima trap. This research proposes a Multi-Objective Mayfly algorithm (MOMF) to consider multi-objective and provides a proper trade-off between exploration and exploitation. The Partial Transmit Sequence (PTS) is applied in the model to test the performance. The FFT sizes and modulation orders are varied to evaluate the performance of the MOMF technique in phase optimization. The MOMF technique effectively increases the performance of the model than other existing optimization techniques. The MOMF technique provides a non-dominated solution to escape from local optima trap. The MOMF model considers PAPR, BER, and SER in MIMO-OFDM system to increase the efficiency of the system. The exploration-exploitation trade-off helps to improve the convergence and overcome local optima trap. The MOMF in OFDM phase optimization was evaluated using BER, SER, and Peak-to-Average Power Ratio (PAPR) metrics. The MOMF method has PAPR of 3.95 dB and PSO-GWO method has 4.92 dB of PAPR.

ABSTRAK: Sistem komunikasi telah digunakan secara meluas sejak beberapa tahun ini dan dapatan kajian menunjukkan keperluan pada kadar transmisi data yang tinggi. Pemultipleksan Bahagian Frekuensi Ortogon (OFDM) menyediakan prestasi berkesan dalam pemilihan pemudaran frekuensi berdasarkan keberkesanan lebar jalur tinggi dan gangguan antara-simbol. Pelbagai teknik optimum digunakan pada kajian sebelum ini bagi meningkatkan keberkesanan OFDM dalam sistem komunikasi. Kajian tersebut mempunyai kekurangan dalam memilih satu objektif bagi membaiki keberkesanan OFDM dan juga mempunyai perangkap optima setempat. Kajian ini mencadangkan algoritma Mayfly Objektif-Pelbagai (MOMF) bagi memilih objektif-pelbagai dan menyediakan keseimbangan yang wajar antara eksplorasi dan eksploitasi. Urutan Pancar Separa (PTS) telah digunakan dalam model ini bagi menguji prestasi. Saiz FFT dan turutan modulasi dipelbagaikan bagi menguji keberkesanan teknik MOMF pada fasa pengoptimuman. Teknik MOMF dengan berkesan menaikkan prestasi model ini berbanding teknik-teknik sedia ada yang lain. Teknik MOMF menyediakan solusi kepada teknik bukan-dominasi bagi mengelak perangkap optima setempat. Model MOMF ini mengambil kira PAPR, BER, dan SER dalam sistem MIMO-OFDM bagi meningkatkan kecekapan sistem. Keseimbangan yang wajar antara eksplorasi-eksploitasi membantu dalam membaiki penumpuan dan mengatasi perangkap optima setempat. MOMF dalam fasa optimanisasi OFDM telah dinilai menggunakan BER, SER, dan matrik Nisbah Kuasa Puncak-kepada-Purata (PAPR). Kaedah MOMF mempunyai nilai PAPR sebanyak 3.95 dB dan kaedah PSO-GWO mempunyai PAPR 4.92 dB.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Suraiya Tarannum, HKBK College of Engineering

 Electronics and Communication Engineering

References

Singh M, Patra SK. (2018) On the PTS optimization using the firefly algorithm for PAPR reduction in OFDM systems. IETE Tech. Rev., 35(5): 441-455. https://doi.org/10.1080/02564602.2018.1505563. DOI: https://doi.org/10.1080/02564602.2018.1505563

Aghdam MH, Sharifi AA. (2019) PAPR reduction in OFDM systems: An efficient PTS approach based on particle swarm optimization. ICT Express, 5(3): 178-181. https://doi.org/10.1016/j.icte.2018.10.003. DOI: https://doi.org/10.1016/j.icte.2018.10.003

Wu W, Cao Y, Wang S, Wang Y. (2018) Joint optimization of PAPR reduction based on modified TR scheme for MIMO-OFDM radar. Digital Signal Process., 80: 27-36. https://doi.org/10.1016/j.dsp.2018.05.008. DOI: https://doi.org/10.1016/j.dsp.2018.05.008

Ahmed MS, Boussakta S, Al-Dweik A, Sharif B, Tsimenidis CC. (2019) Efficient design of selective mapping and partial transmit sequence using T-OFDM. IEEE Trans. Veh. Technol., 69(3): 2636-2648. doi: 10.1109/TVT.2019.2928361. DOI: https://doi.org/10.1109/TVT.2019.2928361

Hu W, Li F, Jiang Y. (2021) Phase Rotations of SVD-Based Precoders in MIMO-OFDM for Improved Channel Estimation. IEEE Wireless Commun. Lett., 10(8): 1805-1809. DOI: 10.1109/LWC.2021.3081583. DOI: https://doi.org/10.1109/LWC.2021.3081583

Emami H, Sharifi AA. (2020) An improved backtracking search optimization algorithm for cubic metric reduction of OFDM signals. ICT Express, 6(3): 258-261. https://doi.org/10.1016/j.icte.2020.03.001. DOI: https://doi.org/10.1016/j.icte.2020.03.001

Sarkar M, Kumar A, Maji B. (2021) PAPR reduction using twin symbol hybrid optimization-based PTS and multi-chaotic-DFT sequence-based encryption in CP-OFDM system. Photonic Network Communications, 41(2): 148-162. https://doi.org/10.1007/s11107-020-00923-7. DOI: https://doi.org/10.1007/s11107-020-00923-7

Amhaimar L, Ahyoud S, Elyaakoubi A, Kaabal A, Attari K, Asselman A. (2018) PAPR reduction using fireworks search optimization algorithm in MIMO-OFDM systems. J. Electr. Comput. Eng., 2018: 3075890. https://doi.org/10.1155/2018/3075890. DOI: https://doi.org/10.1155/2018/3075890

Geetha MN, Mahadevaswamy UB. (2020) Performance evaluation and analysis of peak to average power reduction in OFDM signal. Wireless Personal Communications, 112(4): 2071-2089. https://doi.org/10.1007/s11277-020-07140-5. DOI: https://doi.org/10.1007/s11277-020-07140-5

Du J, Xu W, Zhao C, Vandendorpe, L. (2019) Weighted spectral efficiency optimization for hybrid beamforming in multiuser massive MIMO-OFDM systems. IEEE Trans. Veh. Technol., 68(10): 9698-9712. DOI: 10.1109/TVT.2019.2932128. DOI: https://doi.org/10.1109/TVT.2019.2932128

Lavanya P, Satyanarayana P, Mohatram M. (2022) Peak to average power ratio reduction of ZT DFT-s-OFDM signals using improved monarch butterfly optimization-PTS scheme. J. Ambient Intell. Hum. Comput. https://doi.org/10.1007/s12652-022-03954-2. DOI: https://doi.org/10.1007/s12652-022-03954-2

Ali TH, Hamza A. (2021) Low-complexity PAPR reduction method based on the TLBO algorithm for an OFDM signal. Ann. Telecommun., 76(1): 19-26. https://doi.org/10.1007/s12243-020-00777-0. DOI: https://doi.org/10.1007/s12243-020-00777-0

Sharifi AA, Emami H. (2020) PAPR reduction of asymmetrically clipped optical OFDM signals: Optimizing PTS technique using improved flower pollination algorithm. Opt. Commun., 474: 126057. https://doi.org/10.1016/j.optcom.2020.126057. DOI: https://doi.org/10.1016/j.optcom.2020.126057

Emami H, Sharifi AA. (2020) A novel bio-inspired optimization algorithm for solving peak-to-average power ratio problem in DC-biased optical systems. Opt. Fiber Technol., 60: 102383. https://doi.org/10.1016/j.yofte.2020.102383. DOI: https://doi.org/10.1016/j.yofte.2020.102383

Emami H, Sharifi AA. (2020) Optimizing cubic metric in orthogonal frequency division multiplexing systems using chaotic differential search algorithm. Phys. Commun., 43: 101231. https://doi.org/10.1016/j.phycom.2020.101231. DOI: https://doi.org/10.1016/j.phycom.2020.101231

Padarti VK, Nandhanavanam VR. (2021) An improved ASOICF algorithm for PAPR reduction in OFDM systems. Int. J Intell. Eng. Syst., 14: 352-360. https://doi.org/10.22266/ijies2021.0430.32 DOI: https://doi.org/10.22266/ijies2021.0430.32

Xing Z, Liu K, Rajasekaran AS, Yanikomeroglu H, Liu Y. (2021) A hybrid companding and clipping scheme for PAPR reduction in OFDM systems. IEEE Access, 9: 61565-61576. https://doi.org/10.1109/ACCESS.2021.3074009 DOI: https://doi.org/10.1109/ACCESS.2021.3074009

Yuan Y, Wei S, Luo X, Xu Z, Guan X. (2022) Adaptive PTS scheme based on fuzzy neural network for PAPR reduction in OFDM system. Digital Signal Process., 126: 103492. https://doi.org/10.1016/j.dsp.2022.103492. DOI: https://doi.org/10.1016/j.dsp.2022.103492

Carcangiu S, Fanni A, Montisci A. (2022) A Closed Form Selected Mapping Algorithm for PAPR Reduction in OFDM Multicarrier Transmission. Energies, 15(5): 1938. https://doi.org/10.3390/en15051938. DOI: https://doi.org/10.3390/en15051938

Murad M, Tasadduq IA, Otero P. (2022) Ciphered BCH Codes for PAPR Reduction in the OFDM in Underwater Acoustic Channels. J. Mar. Sci. Eng., 10(1): 91. DOI: https://doi.org/10.3390/jmse10010091

https:// doi.org/10.3390/jmse10010091.

Aghdam MH, Sharifi AA. (2021) A novel ant colony optimization algorithm for PAPR reduction of OFDM signals. Int. J. Commun. Syst., 34(1): e4648. https://doi.org/10.1002/dac.4648.

Wu Y, Hu Y, Wan Z, Wang T, Sun Y, Zhang Q. (2022) Joint security enhancement and PAPR mitigation for OFDM-NOMA VLC systems. Opt. Commun., 508: 127719. https://doi.org/10.1016/j.optcom.2021.127719. DOI: https://doi.org/10.1016/j.optcom.2021.127719

Kumar C, Karpurapu A, Singh YP. (2022) Reduction of PAPR for FBMC-OQAM system using Ant Colony Optimisation technique. Soft Comput., 26(9): 4295-4302. https://doi.org/10.1007/s00500-021-06503-9. DOI: https://doi.org/10.1007/s00500-021-06503-9

Elaziz MA, Senthilraja S, Zayed ME, Elsheikh AH, Mostafa RR, Lu S. (2021) A new random vector functional link integrated with mayfly optimization algorithm for performance prediction of solar photovoltaic thermal collector combined with electrolytic hydrogen production system. Appl. Therm. Eng., 193: 117055. https://doi.org/10.1016/j.applthermaleng.2021.117055. DOI: https://doi.org/10.1016/j.applthermaleng.2021.117055

Shaheen MAM, Hasanien HM, El Moursi MS, El Fergany AA. (2021) Precise modeling of PEM fuel cell using improved chaotic MayFly optimization algorithm. Int. J. Energy Res., 45(13): 18754-18769. https://doi.org/10.1002/er.6987. DOI: https://doi.org/10.1002/er.6987

Liu Z, Jiang P, Wang J, Zhang L. (2021) Ensemble forecasting system for short-term wind speed forecasting based on optimal sub-model selection and multi-objective version of mayfly optimization algorithm. Expert Syst. Appl., 177: 114974. https://doi.org/10.1016/j.eswa.2021.114974 DOI: https://doi.org/10.1016/j.eswa.2021.114974

Adnan RM, Kisi O, Mostafa RR, Ahmed AN, El-Shafie A. (2022) The potential of a novel support vector machine trained with modified mayfly optimization algorithm for streamflow prediction. Hydrol. Sci. J., 67(2): 161-174. https://doi.org/10.1080/02626667.2021.2012182 DOI: https://doi.org/10.1080/02626667.2021.2012182

Wei D, Ji J, Fang J, Yousefi N. (2021) Evaluation and optimization of PEM Fuel Cell-based CCHP system based on Modified Mayfly Optimization Algorithm. Energy Rep., 7: 7663-7674. https://doi.org/10.1016/j.egyr.2021.10.118 DOI: https://doi.org/10.1016/j.egyr.2021.10.118

Liu Y, Chai Y, Liu B, Wang Y. (2021) Bearing Fault Diagnosis Based on Energy Spectrum Statistics and Modified Mayfly Optimization Algorithm. Sensors, 21(6): 2245. Doi: 10.3390/s21062245 DOI: https://doi.org/10.3390/s21062245

Tamilmani G, Devi VB, Sujithra T, Shajin FH, Rajesh P. (2022) Cancer MiRNA biomarker classification based on Improved Generative Adversarial Network optimized with Mayfly Optimization Algorithm. Biomed. Signal Process. Control, 75: 103545. https://doi.org/10.1016/j.bspc.2022.103545 DOI: https://doi.org/10.1016/j.bspc.2022.103545

Downloads

Published

2023-01-04

How to Cite

Azeez, A., & Tarannum, S. (2023). Multi-Objective Mayfly Optimization in Phase Optimization of OFDM. IIUM Engineering Journal, 24(1), 106–121. https://doi.org/10.31436/iiumej.v24i1.2625

Issue

Section

Electrical, Computer and Communications Engineering