USE OF TIO2 AS A REINFORCEMENT OF CASSAVA STARCH/PVA COMPOSITES ON MOISTURE-RESISTANT PROPERTIES OF TRIBOELECTRIC NANOGENERATORS (TENG) FILM

Authors

DOI:

https://doi.org/10.31436/iiumej.v24i2.2554

Keywords:

effect TiO2, cassava starch/PVA, Physicochemical, electrical

Abstract

High humidity environments can accelerate the transmission, neutralization, or dissipation of frictional charges on the frictional surface of solid-solid triboelectric nanogenerator films (TENGs), which can reduce the output power. The moisture resistance properties of the TENG triboelectric film are needed to overcome these problems. Therefore, this study discusses the role of the TiO2 nanofiller in cassava starch (CS) and polyvinyl alcohol (PVA) nanocomposite matrix that can increase triboelectricity through the formation of hydrogen bonds and the provision of oxygen-free electrons. The research method was to incorporate different concentrations of TiO2 nanoparticles (0%, 0.5%, 1%, 5%, 10% wt, and 15% wt) into the CS-PVA nanocomposite matrix using the solvent casting method. The results showed an increase in surface polarity which was more triboelectric-positive due to the CS-PVA hydroxyl group interacting with water molecules. Increasing the concentration above 5% wt TiO2 increases the density of the CS-PVA nanocomposite film which can significantly reduce water vapor permeability (WVP) and increase water resistance. The TENG performance of the CS-PVA/TiO2 nanocomposite film with a concentration of 15% wt TiO2 under conditions of high humidity (RH, 95%) resulted in an output voltage of 2.5-fold (~70.5 V to ~180 V), and the output current increased 2.6-fold (~5.2 ?A to ~13.7 ?A).

ABSTRAK:  Persekitaran berkelembapan tinggi dapat mempercepatkan penghantaran, peneutralan, atau pelesapan cas geseran pada permukaan geseran filem nanopengeluaran triboelektrik pepejal (TENG), di mana mengurangkan pengeluaran tenaga. Sifat rintangan lembapan filem triboelektrik TENG diperlukan bagi mengatasi masalah ini. Oleh itu, kajian ini membincangkan peranan pengisi nano TiO2 dalam matriks nanokomposit kanji ubi kayu (CS) dan polivinil alkohol (PVA) yang dapat meningkatkan triboelektrik melalui pembentukan ikatan hidrogen dan bekalan elektron bebas oksigen. Kaedah kajian ini adalah dengan menggabungkan kepekatan nanozarah TiO2 berbeza (0%, 0.5%, 1%, 5%, 10%, dan 15%) ke dalam matriks nanokomposit CS-PVA menggunakan kaedah tuangan pelarut. Dapatan kajian menunjukkan peningkatan kekutuban permukaan yang lebih positif-triboelektrik adalah disebabkan oleh kumpulan hidroksil CS-PVA yang berinteraksi dengan molekul air. Pertambahan jisim kepekatan TiO2 melebihi 5% meningkatkan ketumpatan filem nanokomposit CS-PVA yang boleh mengurangkan kebolehtelapan wap air dan meningkatkan rintangan air dengan ketara. Prestasi TENG filem nanokomposit CS-PVA/TiO2 dengan jisim kepekatan TiO2 15% dalam keadaan berkelembapan tinggi (RH, 95%) menghasilkan voltan keluaran sebanyak 2.5 kali ganda (~70,5 V kepada ~ 180 V), dan arus keluaran meningkat 2.6 kali ganda (~ 5,2 ?A kepada ~ 13,7 ?A). 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Dzhardimalieva GI, Yadav BC, Lifintseva TV, Uflyand IE. (2021). Polymer chemistry underpinning materials for triboelectric nanogenerators (TENGs): Recent trends. Eur. Polym. J, 142: 110-163. https://doi.org/10.1016/j.eurpolymj.2020.110163 DOI: https://doi.org/10.1016/j.eurpolymj.2020.110163

Wang, J., Wu, C., Dai, Y., Zhao, Z., Wang, A., Zhang, T., & Wang, Z. L. (2017). Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nature Communications, 8(1), 1–7. https://doi.org/10.1038/s41467-017-00131-4 DOI: https://doi.org/10.1038/s41467-017-00131-4

Xia K, Fu J, Xu Z. (2020). Multiple-frequency high-output triboelectric nanogenerator based on a water balloon for all-weather water wave energy harvesting. Adv. Energy Mater, 10(28): 1-9. https://doi.org/10.1002/aenm.202000426 DOI: https://doi.org/10.1002/aenm.202000426

Yoon HJ, Ryu H, Kim SW. (2018). Sustainable powering triboelectric nanogenerators: Approaches and the path towards efficient use. Nano Energy, 51(June): 270-285. https://doi.org/10.1016/j.nanoen.2018.06.075 DOI: https://doi.org/10.1016/j.nanoen.2018.06.075

Song, G., Kim, Y., Yu, S., Kim, M. O., Park, S. H., Cho, S. M., Velusamy, D. B., Cho, S. H., Kim, K. L., Kim, J., Kim, E., & Park, C. (2015). Molecularly Engineered Surface Triboelectric Nanogenerator by Self-Assembled Monolayers (METS). Chemistry of Materials, 27(13), 4749–4755. https://doi.org/10.1021/acs.chemmater.5b01507 DOI: https://doi.org/10.1021/acs.chemmater.5b01507

Mallakpour S, Jarang N. (2016). Mechanical, thermal and optical properties of nanocomposite films prepared by solution mixing of poly(vinyl alcohol) with titania nanoparticles modified with citric acid and Vitamin C. J. Plast. Film Sheeting, 32(3): 293-316. https://doi.org/10.1177/8756087915597024 DOI: https://doi.org/10.1177/8756087915597024

Khushboo, & Azad, P. (2019). Design and implementation of conductor-to-dielectric lateral sliding TENG mode for low power electronics. In Advances in Intelligent Systems and Computing (Vol. 698, Issue May). Springer Singapore. https://doi.org/10.1007/978-981-13-1819-1_17 DOI: https://doi.org/10.1007/978-981-13-1819-1_17

Park, H. W., Huynh, N. D., Kim, W., Lee, C., Nam, Y., Lee, S., Chung, K. B., & Choi, D. (2018). Electron blocking layer-based interfacial design for highly-enhanced triboelectric nanogenerators. Nano Energy, 50, 9–15. https://doi.org/10.1016/j.nanoen.2018.05.024 DOI: https://doi.org/10.1016/j.nanoen.2018.05.024

Kum?onsa, P., Chanlek, N., Manyam, J., Thongbai, P., Harnchana, V., Phromviyo, N., & Chindaprasirt, P. (2021). Gold?nanoparticle?deposited TiO2 nanorod/poly(Vinylidene fluoride) composites with enhanced dielectric performance. Polymers, 13(13), 1–14. https://doi.org/10.3390/polym13132064 DOI: https://doi.org/10.3390/polym13132064

Huynh ND, Park H, Chung K, Choi D. (2018). Effect on TENG performance by phase control of TiO x nanoparticles. Compos. Res, 31(6): 365-370. http://dx.doi.org/10.7234/composres.2018.31.6.365

Sintusiri J, Harnchana V, Amornkitbamrung V, Wongsa A, Chindaprasirt P. (2020). Portland Cement-TiO2 triboelectric nanogenerator for robust large-scale mechanical energy harvesting and instantaneous motion sensor applications. Nano Energy, 74: 104802. https://doi.org/10.1016/j.nanoen.2020.104802 DOI: https://doi.org/10.1016/j.nanoen.2020.104802

Nguyen V, Yang R. (2013). Effect of humidity and pressure on the triboelectric nanogenerator. Nano Energy, 2(5): 604-608. https://doi.org/10.1016/j.nanoen.2013.07.012 DOI: https://doi.org/10.1016/j.nanoen.2013.07.012

Zhang JH, Hao X. (2020). Enhancing output performances and output retention rates of triboelectric nanogenerators via a design of composite inner-layers with coupling effect and self-assembled outer-layers with superhydrophobicity. Nano Energy, 76: 105074. https://doi.org/10.1016/j.nanoen.2020.105074 DOI: https://doi.org/10.1016/j.nanoen.2020.105074

Ahn, J., Zhao, Z. J., Choi, J., Jeong, Y., Hwang, S., Ko, J., Gu, J., Jeon, S., Park, J., Kang, M., Del Orbe, D. V., Cho, I., Kang, H., Bok, M., Jeong, J. H., & Park, I. (2021). Morphology-controllable wrinkled hierarchical structure and its application to superhydrophobic triboelectric nanogenerator. Nano Energy, 85(March), 105978. https://doi.org/10.1016/j.nanoen.2021.105978 DOI: https://doi.org/10.1016/j.nanoen.2021.105978

Shen J, Li Z, Yu J, Ding B. (2017). Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy, 40: 282-288. https://doi.org/10.1016/j.nanoen.2017.08.035 DOI: https://doi.org/10.1016/j.nanoen.2017.08.035

Lv, P., Shi, L., Fan, C., Gao, Y., Yang, A., Wang, X., Ding, S., & Rong, M. (2020). Hydrophobic Ionic Liquid Gel-Based Triboelectric Nanogenerator: Next Generation of Ultrastable, Flexible, and Transparent Power Sources for Sustainable Electronics. ACS Applied Materials and Interfaces, 12(13), 15012–15022. https://doi.org/10.1021/acsami.9b19767 DOI: https://doi.org/10.1021/acsami.9b19767

Zhou, Q., Lee, K., Kim, K. N., Park, J. G., Pan, J., Bae, J., Baik, J. M., & Kim, T. (2019). High humidity- and contamination-resistant triboelectric nanogenerator with superhydrophobic interface. Nano Energy, 57(December 2018), 903–910. https://doi.org/10.1016/j.nanoen.2018.12.091 DOI: https://doi.org/10.1016/j.nanoen.2018.12.091

Ccorahua R, Cordero A, Luyo C, Quintana M, Vela E. (2019). Starch-Cellulose-Based triboelectric nanogenerator obtained by a low-cost cleanroom-free processing method. MRS Adv, 4(23): 1315-1320. https://doi.org/10.1557/adv.2018.652 DOI: https://doi.org/10.1557/adv.2018.652

Wang N, Zheng Y, Feng Y, Zhou F, Wang D. (2020). Biofilm material based triboelectric nanogenerator with high output performance in 95% humidity environment. Nano Energy, 77(May): 105088. https://doi.org/10.1016/j.nanoen.2020.105088 DOI: https://doi.org/10.1016/j.nanoen.2020.105088

Wang J, Wu H, Fu S, Li G, Shan C, He W, Hu C. (2022). Enhancement of output charge density of TENG in high humidity by water molecules induced self-polarization effect on dielectric polymers. Nano Energy, 104(Part B): 107916. https://doi.org/10.1016/j.nanoen.2022.107916 DOI: https://doi.org/10.1016/j.nanoen.2022.107916

Ccorahua R, Huaroto J, Luyo C, Quintana M, Vela EA. (2019). Enhanced-performance bio-triboelectric nanogenerator based on starch polymer electrolyte obtained by a cleanroom-free processing method. Nano Energy, 59(March): 610-618. https://doi.org/10.1016/j.nanoen.2019.03.018 DOI: https://doi.org/10.1016/j.nanoen.2019.03.018

Shi, L., Dong, S., Xu, H., Huang, S., Ye, Q., Liu, S., Wu, T., Chen, J., Zhang, S., Li, S., Wang, X., Jin, H., Kim, J. M., & Luo, J. (2019). Enhanced performance triboelectric nanogenerators based on solid polymer electrolytes with different concentrations of cations. Nano Energy, 64(August), 103960. https://doi.org/10.1016/j.nanoen.2019.103960 DOI: https://doi.org/10.1016/j.nanoen.2019.103960

Zhu Z, Xia K, Xu Z, Lou H, Zhang H. (2018). Starch Paper-Based Triboelectric Nanogenerator for Human Perspiration Sensing. Nanoscale Res. Lett, 13: 4-9. https://doi.org/10.1186/s11671-018-2786-9 DOI: https://doi.org/10.1186/s11671-018-2786-9

Torres FG, Troncoso OP, Torres C, Díaz DA, Amaya E. (2011). Biodegradability and mechanical properties of starch films from Andean crops. Int. J. Biol. Macromol, 48(4): 603-606. https://doi.org/10.1016/j.ijbiomac.2011.01.026 DOI: https://doi.org/10.1016/j.ijbiomac.2011.01.026

Ben Doudou B, Vivet A, Chen J, Laachachi A, Falher T, Poilâne C. (2014). Hybrid carbon nanotube - Silica/ polyvinyl alcohol nanocomposites films: Preparation and characterisation,” J. Polym. Res, 21(4). https://doi.org/10.1007/s10965-014-0420-9 DOI: https://doi.org/10.1007/s10965-014-0420-9

Kochkina NE, Butikova OA. (2019). Effect of fibrous TiO2 filler on the structural, mechanical, barrier and optical characteristics of biodegradable maize starch/PVA composite films. Int. J. Biol. Macromol, 139: 431-439. https://doi.org/10.1016/j.ijbiomac.2019.07.213 DOI: https://doi.org/10.1016/j.ijbiomac.2019.07.213

Rajesh K, Crasta V, Rithin Kumar NB, Shetty G, Rekha PD. (2019). Structural, optical, mechanical and dielectric properties of titanium dioxide doped PVA/PVP nanocomposite. J. Polym. Res, 26(4): 4-10. https://doi.org/10.1007/s10965-019-1762-0 DOI: https://doi.org/10.1007/s10965-019-1762-0

Sarkar S, Guibal E, Quignard F, SenGupta AK (2012). Polymer-supported metals and metal oxide nanoparticles: Synthesis, characterization, and applications. J. Nanoparticle Res, 14(2): 2-24. https://doi.org/10.1007/s11051-011-0715-2 DOI: https://doi.org/10.1007/s11051-011-0715-2

Alvarez-Ramirez J, Vazquez-Arenas J, García-Hernández A, Vernon-Carter EJ. (2019). Improving the mechanical performance of green starch/glycerol/Li + conductive films through cross-linking with Ca2+. Solid State Ionics, 332(November): 1-9. https://doi.org/10.1016/j.ssi.2019.01.002 DOI: https://doi.org/10.1016/j.ssi.2019.01.002

Abdullah AM, Aziz SB, Saeed SR(2021). Structural and electrical properties of polyvinyl alcohol (PVA):Methyl cellulose (MC) based solid polymer blend electrolytes inserted with sodium iodide (NaI) salt. Arab. J. Chem, 14(11): 103388. https://doi.org/10.1016/j.arabjc.2021.103388 DOI: https://doi.org/10.1016/j.arabjc.2021.103388

Bergo P, Sobral PJA, Prison JM. (2011). Effect of glycerol on physical properties of cassava starch films. J. Food Process. Preserv, 34(2): 401-410.

https://doi.org/10.1111/j.1745-4549.2008.00282.x DOI: https://doi.org/10.1111/j.1745-4549.2008.00282.x

Adamu AD, Jikan SS, Talip BHA, Badarulzaman NA, Yahaya S. (2017). Effect of glycerol on the properties of tapioca starch film. Mater. Sci. Forum, 888: 239-243. https://doi.org/10.4028/www.scientific.net/MSF.888.239 DOI: https://doi.org/10.4028/www.scientific.net/MSF.888.239

Abral H, Hartono A, Hafizulhaq F, Handayani D, Sugiarti E, Pradipta O. (2019). Characterization of PVA/cassava starch biocomposites fabricated with and without sonication using bacterial cellulose fiber loadings. Carbohydr. Polym, 206: 593-601. https://doi.org/10.1016/j.carbpol.2018.11.054 DOI: https://doi.org/10.1016/j.carbpol.2018.11.054

Surudži?, R., Jankovi?, A., Bibi?, N., Vukašinovi?-Sekuli?, M., Peri?-Gruji?, A., Miškovi?-Stankovi?, V., Park, S. J., & Rhee, K. Y. (2016). Physico-chemical and mechanical properties and antibacterial activity of silver/poly(vinyl alcohol)/graphene nanocomposites obtained by electrochemical method. Composites Part B: Engineering, 85, 102–112. https://doi.org/10.1016/j.compositesb.2015.09.029 DOI: https://doi.org/10.1016/j.compositesb.2015.09.029

Wang Y, Zhang H, Zeng Y,Hossen Md A, Dai Y, Li S, Liu Y, Qin W. (2022). Development and characterization of potato starch/lactucin/nano-TiO2 food packaging for sustained prevention of mealworms. Food Packag. Shelf Life, 33: 100-837. https://doi.org/10.1016/J.FPSL.2022.100837 DOI: https://doi.org/10.1016/j.fpsl.2022.100837

Oleyaei SA, Almasi H, Ghanbarzadeh B, Moayedi AA. (2016). Synergistic reinforcing effect of TiO2 and montmorillonite on potato starch nanocomposite films: Thermal, mechanical and barrier properties. Carbohydrate Polymers, 152: 263-262. https://doi.org/10.1016/j.carbpol.2016.07.040 DOI: https://doi.org/10.1016/j.carbpol.2016.07.040

Park, H. W., Huynh, N. D., Kim, W., Hwang, H. J., Hong, H., Choi, K. H., Song, A., Chung, K. B., & Choi, D. (2018). Effects of embedded TiO2-x nanoparticles on triboelectric nanogenerator performance. Micromachines, 9(8). https://doi.org/10.3390/mi9080407 DOI: https://doi.org/10.3390/mi9080407

Bunriw, W., Harnchana, V., Chanthad, C., & Huynh, V. N. (2021). Natural rubber-TiO2 nanocomposite film for triboelectric nanogenerator application. Polymers, 13(13), 1–12. https://doi.org/10.3390/polym13132213 DOI: https://doi.org/10.3390/polym13132213

Butyral, P., Anti, E., Agent, O., Benas, J., Huang, C., Yan, Z., Liang, F., & Li, P. (2022). Nanofiber-Based Odor-Free Medical Mask Fabrication Using Polyvinyl Butyral and Eucalyptus Anti Odor Agent. Polymers 2022, 14: 4447. https://doi.org/10.3390/polym14204447 DOI: https://doi.org/10.3390/polym14204447

Wang, N., Feng, Y., Zheng, Y., Zhang, L., Feng, M., Li, X., Zhou, F., & Wang, D. (2021). New Hydrogen Bonding Enhanced Polyvinyl Alcohol Based Self-Charged Medical Mask with Superior Charge Retention and Moisture Resistance Performances. Advanced Functional Materials, 31(14), 1–14. https://doi.org/10.1002/adfm.202009172 DOI: https://doi.org/10.1002/adfm.202009172

Patil, S., Bharimalla, A. K., Mahapatra, A., Dhakane-Lad, J., Arputharaj, A., Kumar, M., Raja, A. S. M., & Kambli, N. (2021). Effect of polymer blending on mechanical and barrier properties of starch-polyvinyl alcohol based biodegradable composite films. Food Bioscience, 44(PA), 101352. https://doi.org/10.1016/j.fbio.2021.101352 DOI: https://doi.org/10.1016/j.fbio.2021.101352

Downloads

Published

2023-07-04

How to Cite

Ansori, A., Soeparman, S., Widhiyanuriyawan, D., & Widodo, T. D. (2023). USE OF TIO2 AS A REINFORCEMENT OF CASSAVA STARCH/PVA COMPOSITES ON MOISTURE-RESISTANT PROPERTIES OF TRIBOELECTRIC NANOGENERATORS (TENG) FILM. IIUM Engineering Journal, 24(2), 269–285. https://doi.org/10.31436/iiumej.v24i2.2554

Issue

Section

Mechanical and Aerospace Engineering