An Integrated RRT*SMART-A* Algorithm for solving the Global Path Planning Problem in a Static Environment

Authors

DOI:

https://doi.org/10.31436/iiumej.v24i1.2529

Keywords:

Path Planning, A* Algorithm, RRT*-Smart Algorithm

Abstract

The use of sampling-based algorithms such as Rapidly-Exploring Random Tree Star (RRT*) has been widely applied in robot path planning. Although this variant of RRT offers asymptotic optimality, its use is increasingly limited because it suffers from convergence rates, mainly when applied to an environment with a poor level of obstacle neatness and a narrow area to the target. Thus, RRT*-Smart, a further development of RRT*, is considered ideal for solving RRT* problems. Unlike RRT*, RRT*-Smart applies a path optimization by removing the redundant nodes from the initial path when it is gained. Moreover, the path is also improved by identifying the beacon nodes used to steer the bias of intelligent sampling. Nevertheless, this initial path is found with termination criteria in terms of a region around the goal node. Consequently, it risks failing to generate a path on a narrow channel. Therefore, a novel algorithm achieved by combining RRT*-Smart and A* is proposed. This combination is intended to switch method-by-method for the exploration process when the new node reaches the region around the goal node. However, before RRT*-Smart is combined with A*, it is improved by replacing the random sampling method with Fast Sampling. In short, by involving A*, the exploration process for generating the Smart-RRT*’s initial path can be supported. It gives the optimal and feasible raw solution for any complex environment. It is logically realistic because A* searches and evaluates all neighbors of a current node when finding the node with low cost to the start and goal node for each iteration. Therefore, the risk of collision with an obstacle in the goal region is covered, and generating an initial path in the narrow channel can be handled. Furthermore, this proposed method's optimality and fast convergence rate are satisfied. 

ABSTRAK: Penggunaan algoritma berasaskan pensampelan seperti Rapidly-Exploring Random Tree Star (RRT*) telah digunakan secara meluas dalam perancangan laluan robot. Walaupun varian RRT ini menawarkan keoptimuman tanpa gejala, penggunaannya semakin terhad kerana ia mengalami kadar penumpuan, terutamanya apabila digunakan pada persekitaran dengan tahap kekemasan halangan yang lemah dan kawasan yang sempit ke sasaran. Oleh itu, RRT*-Smart, pembangunan lanjut RRT*, dianggap sesuai untuk menyelesaikan masalah RRT*. Tidak seperti RRT*, RRT*-Smart menggunakan pengoptimuman laluan dengan mengalih keluar nod berlebihan daripada laluan awal apabila ia diperoleh. Selain itu, laluan juga dipertingkatkan dengan mengenal pasti nod suar yang digunakan untuk mengemudi bias pensampelan pintar. Namun begitu, laluan awal ini ditemui dengan kriteria penamatan dari segi rantau di sekeliling nod matlamat. Akibatnya, ia berisiko gagal menjana laluan pada saluran yang sempit. Oleh itu, algoritma baru yang dicapai dengan menggabungkan RRT*-Smart dan A* dicadangkan. Gabungan ini bertujuan untuk menukar kaedah demi kaedah untuk proses penerokaan apabila nod baharu sampai ke kawasan sekitar nod matlamat. Walau bagaimanapun, sebelum RRT*-Smart digabungkan dengan A*, ia diperbaiki dengan menggantikan kaedah persampelan rawak dengan Persampelan Pantas. Pendek kata, dengan melibatkan A*, proses penerokaan dalam menjana laluan awal yang Smart-RRT lakukan* boleh disokong. Ia memberikan penyelesaian mentah yang optimum dan boleh dilaksanakan untuk mana-mana persekitaran yang kompleks. Ia adalah realistik secara logik kerana A* mencari dan menilai semua jiran nod semasa apabila mencari nod dengan kos rendah ke nod permulaan dan matlamat untuk setiap lelaran. Oleh itu, risiko perlanggaran dengan halangan di kawasan matlamat dilindungi, dan menjana laluan awal dalam saluran sempit boleh dikendalikan. Tambahan pula, kaedah optimum yang dicadangkan dan kadar penumpuan yang cepat ini berpuas hati.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Satapathy SC, Biswal BN, Udgata SK, Mandal JK. (2014). Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014. Advances in Intelligent Systems and Computing, 327: 175-183. https://doi.org/10.1007/978-3-319-11933-5. DOI: https://doi.org/10.1007/978-3-319-11933-5

Adriansyah A, Suwoyo H, Tian Y. (2019). Jurnal Teknologi IMPROVING ROBOT. 3: 119-126.

Tian Y, Suwoyo H, Wang W, Li L. (2019). An ASVSF-SLAM Algorithm with Time-Varying Noise Statistics Based on MAP Creation and Weighted Exponent. Mathematical Problems in Engineering, 2019(1): 1-17. https://doi.org/10.1155/2019/2765731. DOI: https://doi.org/10.1155/2019/2765731

Al-Mutib K, Faisal M, Alsulaiman M, Abdessemed F, Ramdane H, Bencherif M. (2017). Obstacle avoidance using wall-following strategy for indoor mobile robots. 2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation, ROMA 2016, 1-6. https://doi.org/10.1109/ROMA.2016.7847817. DOI: https://doi.org/10.1109/ROMA.2016.7847817

Siegwart, R., Nourbakhsh, I. R., & Scaramuzza, D. (2011). Introduction to autonomous mobile robots. MIT press.

Kümmerle, R. (2013). State estimation and optimization for mobile robot navigation (Doctoral dissertation, Verlag nicht ermittelbar).

Jeong IB, Lee SJ, Kim JH. (2019). Quick-RRT*: Triangular inequality-based implementation of RRT* with improved initial solution and convergence rate. Expert Systems with Applications, 123: 82-90. https://doi.org/10.1016/j.eswa.2019.01.032. DOI: https://doi.org/10.1016/j.eswa.2019.01.032

Baglivo L, Bellomo N, Miori G, Marcuzzi E, Pertile M, Cecco MDe. (2008). An object localization and reaching method for wheeled mobile robots using laser rangefinder. 2008 4th International IEEE Conference Intelligent Systems, IS 2008. 1. 5-6. https://doi.org/10.1109/IS.2008.4670429. DOI: https://doi.org/10.1109/IS.2008.4670429

Chen W, Qin H. (2011). Path planning of mobile robot based on hybrid cascaded genetic algorithm. Proceedings of the World Congress on Intelligent Control and Automation (WCICA), 501-504. https://doi.org/10.1109/WCICA.2011.5970564. DOI: https://doi.org/10.1109/WCICA.2011.5970564

Kim T, Wang Y, Sahinoglu Z, Wada T, Hara S, Qiao W. (2014). State of charge estimation based on a realtime battery model and iterative smooth variable structure filter. IEEE Innovative Smart Grid Technologies - Asia, ISGT ASIA 2014, 132-137. https://doi.org/10.1109/ISGT-Asia.2014.6873777. DOI: https://doi.org/10.1109/ISGT-Asia.2014.6873777

Mashayekhi R, Idris MYI, Anisi MH, Ahmedy I, Ali I. (2020). Informed RRT?-Connect: An Asymptotically Optimal Single-Query Path Planning Method. IEEE Access, 8: 19842-19852. https://doi.org/10.1109/ACCESS.2020.2969316. DOI: https://doi.org/10.1109/ACCESS.2020.2969316

Qureshi AH, Ayaz Y. (2016). Potential functions based sampling heuristic for optimal path planning. Autonomous Robots, 40(6): 1079-1093.

https://doi.org/10.1007/s10514-015-9518-0. DOI: https://doi.org/10.1007/s10514-015-9518-0

Perez A, Karaman S, Shkolnik A, Frazzoli E, Teller S, Walter MR. (2011). Asymptotically-optimal path planning for manipulation using incremental sampling-based algorithms. IEEE International Conference on Intelligent Robots and Systems, 4307-4313. https://doi.org/10.1109/IROS.2011.6048640. DOI: https://doi.org/10.1109/IROS.2011.6094994

Yi G, Zhou C, Cao Y, Hu H. (2021). Hybrid assembly path planning for complex products by reusing a priori data. Mathematics, 9(4): 1-13. https://doi.org/10.3390/math9040395. DOI: https://doi.org/10.3390/math9040395

Chen J, Zhao Y, Xu X. (2021). Improved RRT-Connect Based Path Planning Algorithm for Mobile Robots. IEEE Access, 9: 145988-145999. https://doi.org/10.1109/ACCESS.2021.3123622. DOI: https://doi.org/10.1109/ACCESS.2021.3123622

Nasir J, Islam F, Malik U, Ayaz Y, Hasan O, Khan M, Muhammad MS. (2013). RRT*-Smart: A rapid convergence implementation of RRT*,. International Journal of Advanced Robotic Systems. https://doi.org/10. 299. 10.5772/56718. DOI: https://doi.org/10.5772/56718

Liao B, Wan F, Hua Y, Ma R, Zhu S, Qing X. (2021). F-RRT*: An improved path planning algorithm with improved initial solution and convergence rate. Expert Systems with Applications. 184. 115457. 10.1016/j.eswa.2021.115457. DOI: https://doi.org/10.1016/j.eswa.2021.115457

Mashayekhi R, Idris MYI, Anisi MH, Ahmedy I. (2020). Hybrid RRT: A semi-dual-tree RRT-based motion planner. IEEE Access, 8: 18658-18668. https://doi.org/10.1109/ACCESS.2020.2968471. DOI: https://doi.org/10.1109/ACCESS.2020.2968471

Noreen I, Khan A, Habib Z. (2016). A Comparison of RRT, RRT* and RRT*-Smart Path Planning Algorithms. IJCSNS International Journal of Computer Science and Network Security, 16(10): 20-27. http://cloud.politala.ac.id/politala/1. Jurusan/Teknik Informatika/19. e-journal/Jurnal Internasional TI/IJCSNS/2016 Vol. 16 No. 10/20161004_A Compar ison of RRT, RRT and RRT - Smart Path Planning Algorithms.pdf

Islam F, Nasir J, Malik U, Ayaz Y, Hasan O. (2012). RRT*-Smart: Rapid convergence implementation of RRT* towards optimal solution. 2012 IEEE International Conference on Mechatronics and Automation, ICMA 2012, 1651-1656. https://doi.org/10.1109/ICMA.2012.6284384. DOI: https://doi.org/10.1109/ICMA.2012.6284384

Noreen, I., Khan, A., Asghar, K., & Habib, Z. (2019). A Path-Planning Performance Comparison of RRT*-AB with MEA* in a 2-Dimensional Environment. Symmetry, 11(7), 945. MDPI AG. Retrieved from http://dx.doi.org/10.3390/sym11070945. DOI: https://doi.org/10.3390/sym11070945

Prince, C.G. (2004). Book Review: Computational Principles of Mobile Robotics. Minds and Machines 14, 407–414. https://doi.org/10.1023/B:MIND.0000035501.55990.99. DOI: https://doi.org/10.1023/B:MIND.0000035501.55990.99

Barfoot, T. (2017). State Estimation for Robotics. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781316671528. DOI: https://doi.org/10.1017/9781316671528

Fernández-Madrigal J-A. (2012). Simultaneous Localization and Mapping for Mobile Robots: Introduction and Methods. IGI global. https://doi.org/10.4018/978-1-4666-2104-6. DOI: https://doi.org/10.4018/978-1-4666-2104-6

Gao Z, Mu D, Zhong Y, Gu C, Ren C. (2019). Adaptively Random Weighted Cubature Kalman Filter for Nonlinear Systems. Mathematical Problems in Engineering. 2019. 1-13. 10.1155/2019/4160847. DOI: https://doi.org/10.1155/2019/4160847

Kocijan, J. (2016). Modelling and control of dynamic systems using Gaussian process models (pp. 33-38). Cham: Springer International Publishing .https://doi.org/10.1007/978-3-319-21021-6. DOI: https://doi.org/10.1007/978-3-319-21021-6

Ni J, Wang K, Huang H, Wu L, Luo C. (2016). Robot path planning based on an improved genetic algorithm with variable length chromosome. 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, ICNC-FSKD 2016, 145-149. https://doi.org/10.1109/FSKD.2016.7603165. DOI: https://doi.org/10.1109/FSKD.2016.7603165

Magzhan K, Jani H. (2013). A Review And Evaluations Of Shortest Path Algorithms. International Journal of Scientific & Technology Research, 2(6): 99-104. http://www.ijstr.org/final-print/june2013/A-Review-And-Evaluations-Of-Shortest-Path-Algorithms.pdf.

Rachmawati D, Gustin L. (2020). Analysis of Dijkstra’s Algorithm and A* Algorithm in Shortest Path Problem. Journal of Physics: Conference Series. 1566. 012061. https://doi.org/10.1088/1742-6596/1566/1/012061. DOI: https://doi.org/10.1088/1742-6596/1566/1/012061

Downloads

Published

2023-01-04

How to Cite

Suwoyo, H., Adriansyah, A., Andika, J., Ubaidillah, A., & Zakaria, M. F. (2023). An Integrated RRT*SMART-A* Algorithm for solving the Global Path Planning Problem in a Static Environment. IIUM Engineering Journal, 24(1), 269–284. https://doi.org/10.31436/iiumej.v24i1.2529

Issue

Section

Mechatronics and Automation Engineering

Most read articles by the same author(s)