The Ricochet of Spinning Spheres Off Water

Authors

DOI:

https://doi.org/10.31436/iiumej.v24i1.2448

Keywords:

Magnus, Water-entry bodies, Ricochet behavior, Bouncing rigid body.

Abstract

Liquid impact and ricochet is still attracting researchers interested in the field of hydrodynamics and naval engineering. The ricochet from a water surface experienced by spinning spheres was examined both analytically and numerically. A theoretical analysis was made to quantify the enhancement attained by imparting backspin to the sphere. Numerical simulation of the process was conducted by implementing ABAQUS software. The mathematical analysis and the simulation were built on the assumption that the effects of cavitation, splash, and two phase flow are negligible compared to hydro-dynamical forces of lift and drag. It was proven that both mathematical analysis and simulation were capable of predicting the trajectory of a spinning sphere during its course of entry into the water. Aspects like the critical angle of ricochet and the maximum depth of immersion were extracted from these trajectories and compared with available data. It was found that the analytical and numerical results were generally validated with respect to each other as well as to existing findings. Aluminum () spinning spheres, of radius 10 mm and speed of 10 m/sec, were examined. It was found that a 300 rad/sec backspin improves the critical angle of ricochet from 10.43 to 12.5 deg and increases the maximum depth of immersion from 1.52 to 1.83.  "Magnus Effect" usually acting on a fully immersed spinning sphere, was described and relations estimating the hydrodynamic forces were deduced.

ABSTRAK: Keadaan pertumbuhan bakteria penghasil enzim protease aktif-sejuk terasing daripada sampel Antartika disaring menggunakan satu-faktor-satu-masa (OFAT). Kemudian, enzim protease ini diekstrak pada lewat fasa logaritma untuk ujian enzimatik. Strain yang menunjukkan aktiviti enzim tertinggi telah dipilih bagi tujuan pengoptimuman melalui Kaedah Permukaan Tindak Balas (RSM). Parameter yang dikaji adalah pada suhu pengeraman (4 - 36 °C), media pH (4 – 10) dan kepekatan NaCl (0 - 8 %). Berdasarkan dapatan OFAT, kesemua lapan bakteria menunjukkan kadar pertumbuhan tertinggi pada 20 °C, pH 7 dan 4% NaCl (w/v). Hasil ujian enzimatik menunjukkan enzim protease mentah yang diekstrak daripada SC8 menunjukkan aktiviti yang jauh lebih tinggi (0.20 U dan 0.37 U) daripada kawalan positif (0.11 U dan 0.31 U) pada -20 °C dan 20 °C. RSM ini menunjukkan kadar optimum bagi pertumbuhan SC8 adalah pada 20.5 °C, pH 6.83 dan 2.05% NaCl (w/v) dengan dapatan kadar pertumbuhan bakteria pada 3.70 ± 0.06 x 106 sel/jam. Keadaan pertumbuhan optimum SC8 melalui kajian ini bermanfaat bagi menghasilkan produk protease aktif-sejuk secara besar-besaran pada masa hadapan.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Tan Z, Zhang W, Zhang Z, Qian D, Huang Y, Hou J, Li Y. (2012) High performance inverted polymer solar cells with solution processed titanium chelate as electron collecting layer on ITO electrode. Advanced Materials, 24(11): 1476-81. https://doi.org/10.1002/adma.201104863 DOI: https://doi.org/10.1002/adma.201104863

Osada T, Kugler T, Bröms P, Salaneck W. (1998) Polymer-based light-emitting devices: investigations on the role of the indium—tin oxide (ITO) electrode. Synthetic Metals, 96(1): 77-80. https://doi.org/10.1016/S0379-6779(98)00069-1 DOI: https://doi.org/10.1016/S0379-6779(98)00069-1

Oh B-Y, Jeong M-C, Moon T-H, Lee W, Myoung J-M, Hwang J-Y, Seo D-S. (2006) Transparent conductive Al-doped ZnO films for liquid crystal displays. Journal of Applied Physics, 99(12): 124505. https://doi.org/10.1063/1.2206417 DOI: https://doi.org/10.1063/1.2206417

Mochizuki T, Takigami Y, Kondo T, Okuzaki H. (2018) Fabrication of flexible transparent electrodes using PEDOT: PSS and application to resistive touch screen panels. Journal of Applied Polymer Science, 135(10): 45972. https://doi.org/10.1002/app.45972 DOI: https://doi.org/10.1002/app.45972

Liu Z, Parvez K, Li R, Dong R, Feng X, Müllen K. (2015) Transparent conductive electrodes from graphene/PEDOT: PSS hybrid inks for ultrathin organic photodetectors. Advanced Materials, 27(4): 669-675. https://doi.org/10.1002/adma.201403826 DOI: https://doi.org/10.1002/adma.201403826

Kim Y, Kim Y, Kim JH. (2020) Highly Conductive PEDOT: PSS Thin Films with Two-Dimensional Lamellar Stacked Multi-Layers. Nanomaterials, 10(11): 2211. https://doi.org/10.3390/nano10112211 DOI: https://doi.org/10.3390/nano10112211

Na SI, Kim SS, Jo J, Kim DY. (2008) Efficient and flexible ITO free organic solar cells using highly conductive polymer anodes. Advanced Materials, 20(21): 4061-4067. https://doi.org/10.1002/adma.200800338 DOI: https://doi.org/10.1002/adma.200800338

Alzoubi K, Hamasha MM, Lu S, Sammakia B. (2011) Bending fatigue study of sputtered ITO on flexible substrate. Journal of Display Technology, 7(11): 593-600. https://doi.org/10.1109/JDT.2011.2151830 DOI: https://doi.org/10.1109/JDT.2011.2151830

Galagan Y, Mescheloff A, Veenstra SC, Andriessen R, Katz EA. (2015) Reversible degradation in ITO-containing organic photovoltaics under concentrated sunlight. Physical Chemistry Chemical Physics, 17(5):3891-3897. https://doi.org/10.1039/C4CP05571C DOI: https://doi.org/10.1039/C4CP05571C

Liu Z, Wang N. (2018) Effects of highly conductive PH1000 anode in combination with ethylene glycol additive and H2SO4 immersion treatments on photovoltaic performance and photostability of polymer solar cells. Journal of Materials Chemistry C, 6(36): 9734-9741. https://doi.org/10.1039/C8TC02467G DOI: https://doi.org/10.1039/C8TC02467G

Benoudjit A, Guthoos HFA, Arris FA, Salim WWAW. (2017) PEDOT:PSS–modified platinum microelectrodes for measurements in aqueous media: effect of polymer surface area on long-term anodic peak current stability. IIUM Engineering Journal, 18(2): 11-15. https://doi.org/10.31436/iiumej.v18i2.715 DOI: https://doi.org/10.31436/iiumej.v18i2.715

Kim Y, Cho W, Kim Y, Cho H, Kim JH. (2018) Electrical characteristics of heterogeneous polymer layers in PEDOT: PSS films. Journal of Materials Chemistry C, 6(33): 8906-8913. https://doi.org/10.1039/C8TC02598C DOI: https://doi.org/10.1039/C8TC02598C

Kim N, Kee S, Lee SH, Lee BH, Kahng YH, Jo YR, Kim BJ, Lee K. (2014) Highly conductive PEDOT: PSS nanofibrils induced by solution processed crystallization. Advanced Materials, 26(14):2268-2272. https://doi.org/10.1002/adma.201304611 DOI: https://doi.org/10.1002/adma.201304611

Vigna L, Verna A, Marasso S, Sangermano M, D’Angelo P, Pirri F, Cocuzza M. (2021) The effects of secondary doping on ink-jet printed PEDOT: PSS gas sensors for VOCs and NO2 detection. Sensors and Actuators B: Chemical, 345: 130381. https://doi.org/10.1016/j.snb.2021.130381 DOI: https://doi.org/10.1016/j.snb.2021.130381

Bießmann L, Saxena N, Hohn N, Hossain MA, Veinot JG, Müller Buschbaum P. (2019) Highly conducting, transparent PEDOT: PSS polymer electrodes from post treatment with weak and strong acids. Advanced Electronic Materials, 5(2): 1800654. https://doi.org/10.1002/aelm.201800654 DOI: https://doi.org/10.1002/aelm.201800654

Yun D-J, Ra H, Kim J-M, Lee J-H, Park SH, Hwang J, Chung J, Kim S-H, Kim Y-S, Jeong YJ. (2019) A study on distinctive transition mechanism of sulfuric acid treatment on performance enhancement of poly (3, 4-ethylenedioxythiophene): Polystyrene based electrodes depending on multiwall carbon nanotube dose. Applied Surface Science, 487: 480-487. https://doi.org/10.1016/j.apsusc.2019.05.125 DOI: https://doi.org/10.1016/j.apsusc.2019.05.125

Kim J, Jang JG, Hong J-I, Kim SH, Kwak J. (2016) Sulfuric acid vapor treatment for enhancing the thermoelectric properties of PEDOT: PSS thin-films. Journal of Materials Science: Materials in Electronics, 27(6): 6122-6127. https://doi.org/10.1007/s10854-016-4538-x DOI: https://doi.org/10.1007/s10854-016-4538-x

Wen R, Huang H, Wan J, Wen S, Wang J, Fan X. (2021) High Efficiency Stable Flexible Organic Solar Cells with PEDOT: PSS Electrodes via Superacid Fumigation Treatment. Energy Technology, 9(11): 2100595. https://doi.org/10.1002/ente.202100595 DOI: https://doi.org/10.1002/ente.202100595

Montanino M, De Girolamo Del Mauro A, Tesoro M, Ricciardi R, Diana R, Morvillo P, Nobile G, Imparato A, Sico G, Minarini C. (2015) Gravure-printed PEDOT: PSS on flexible PEN substrate as ITO-free anode for polymer solar cells. Polymer Composites, 36(6): 1104-1109. https://doi.org/10.1002/pc.23486 DOI: https://doi.org/10.1002/pc.23486

Wang C, Sun K, Fu J, Chen R, Li M, Zang Z, Liu X, Li B, Gong H, Ouyang J. (2018) Enhancement of conductivity and thermoelectric property of PEDOT: PSS via acid doping and single post-treatment for flexible power generator. Advanced Sustainable Systems, 2(12): 1800085. https://doi.org/10.1002/adsu.201800085 DOI: https://doi.org/10.1002/adsu.201800085

Lien S-Y, Lin P-C, Chen W-R, Liu C-H, Sze P-W, Wang N-F, Huang C-J. (2022) Improving Optoelectrical Properties of PEDOT: PSS by Organic Additive and Acid Treatment. Crystals, 12(4): 537. https://doi.org/10.3390/cryst12040537 DOI: https://doi.org/10.3390/cryst12040537

Kim YH, Sachse C, Machala ML, May C, Müller Meskamp L, Leo K. (2011) Highly conductive PEDOT: PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Advanced Functional Materials, 21(6): 1076-1081. https://doi.org/10.1002/adfm.201002290 DOI: https://doi.org/10.1002/adfm.201002290

Scardaci V, Coull R, Coleman JN. (2010) Very thin transparent, conductive carbon nanotube films on flexible substrates. Applied Physics Letters, 97(2): 023114. https://doi.org/10.1063/1.3462317 DOI: https://doi.org/10.1063/1.3462317

Lee K, Lee S-H, Nara K, Seyoung K. (2016) PEDOT:PSS based electrode and method for manufacturing the same. Google Patents. Oct 25. US Patent 9,478,743. https://patents.google.com/patent/US9478743B2/en

Cui H, Song W, Fanady B, Peng R, Zhang J, Huang J, Ge Z. (2019) Flexible ITO-free organic solar cells over 10% by employing drop-coated conductive PEDOT: PSS transparent anodes. Science China Chemistry, 62(4):500-505. https://doi.org/10.1007/s11426-018-9426-2 DOI: https://doi.org/10.1007/s11426-018-9426-2

Tian Y, Wang T, Zhu Q, Zhang X, Ethiraj AS, Geng W-M, Geng H-Z. (2021) High-performance transparent PEDOT: Pss/CNT films for OLEDs. Nanomaterials, 11(8): 2067. https://doi.org/10.3390/nano11082067 DOI: https://doi.org/10.3390/nano11082067

Downloads

Published

2023-01-04

How to Cite

Kiter, R. N., Abbood, M. Y., & Hassoon, O. (2023). The Ricochet of Spinning Spheres Off Water. IIUM Engineering Journal, 24(1), 226–243. https://doi.org/10.31436/iiumej.v24i1.2448

Issue

Section

Mechanical and Aerospace Engineering