BEHAVIORS OF THERMOELASTIC PROPERTIES IN NI-TI BASED SHAPE MEMORY ALLOYS, PROCESSED BY METAL FORMING TECHNIQUES
DOI:
https://doi.org/10.31436/iiumej.v24i2.2442Keywords:
Extrusion, Nickel-based alloy, shape memory alloysAbstract
In this work, the thermoelastic properties of Ni-Ti shape memory alloys (SMA) processed by conventional rolling and equal channel angular extrusion (ECAE) were investigated. SMAs have two phases: Austenite (at high temperature) and Martensite (at low temperature). The samples were compared under five different thermal and processing conditions: homogenized, rolled, rolled-annealed, extruded, and extruded-annealed. The homogenized sample served as a reference. The samples were analyzed by differential scanning calorimetry (DSC) to determine the thermoelastic transformation temperatures. Images were taken using scanning electronic microscopy (SEM) in conjunction with energy dispersive spectroscopy (EDS). The dynamic area was completed for two tests: under constant load bending (simulation of the memory effect to determine the reversible thermoelastic strain) and dynamic mechanical analysis (DMA). The results showed that the plastic forming processes alter the properties, especially for samples exposed to the ECAE, which can block the martensitic phase. However, R-phase (a rhombohedral phase), that can appear at low temperatures before the martensitic phase, emerges totally when the extruded sample suffers annealing. The images of SEM, confirmed by EDS, show that any type of forming process and the presence of precipitates have a significant influence on the behavior of the elastic property. It was found that extrusion has a greater effect on the restoring properties of the alloys than rolling. This analysis is of great importance for the use of SMA in applications requiring high mechanical strength combined with the functional properties of shape recovery through martensitic phase transformations.
ABSTRAK: Kajian ini adalah berkaitan sifat-sifat bentuk aloi ingatan (SMA) termoelastik Ni-Ti yang diproses melalui penggelek konvensional dan penyemperitan sudut saluran sama (ECAE). SMA mempunyai dua peringkat: Austenit (pada suhu tinggi) dan Martensit (pada suhu rendah). Sampel dibandingkan pada lima tahap kepanasan dan proses iaitu: percampuran, penggulungan, penggulungan-rataan, perataan dan penyemperitan-rataan. Sampel campuran yang dihomogenkan dijadikan sebagai sampel rujukan. Sampel dianalisis dengan pengimbas kalorimetri pembezaan (DSC) bagi menentukan suhu transformasi termoelastik. Imej diambil menggunakan pengimbas mikroskop elektronik (SEM) bersama spektroskopi penyebaran tenaga (EDS). Kawasan dinamik diuji dengan dua ujian: di bawah lenturan beban malar (simulasi kesan memori bagi menentukan terikan termoelastik boleh balik) dan analisis mekanik dinamik (DMA). Dapatan kajian menunjukkan bahawa proses pembentukan plastik telah mengubah sifat, terutama pada sampel yang terdedah kepada penyemperitan sudut saluran sama ECAE, yang boleh menyekat fasa martensit. Walau bagaimanapun, fasa-R (fasa rombohedral) yang boleh muncul pada suhu rendah sebelum fasa martensitik, muncul sepenuhnya apabila sampel tersemperit mengalami penyepuhlindapan (penyemperitan-rataan). Imej pengimbasan mikroskop elektron, seperti yang dibuktikan dengan spektroskopi penyebaran tenaga (EDS), menunjukkan bahawa apa-apa jenis proses pembentukan dan kehadiran mendakan mempunyai pengaruh kuat terhadap sifat elastik. Dapatan kajian juga mendapati bahawa penyemperitan mempunyai kesan yang lebih besar terhadap sifat pemulihan aloi berbanding proses penggulungan. Analisis ini sangat penting bagi penggunaan bentuk aloi ingatan (SMA) dalam aplikasi yang memerlukan kekuatan mekanikal yang tinggi bersama sifat pemulihan bentuk melalui transformasi fasa martensit.
Downloads
Metrics
References
Otsuka K, Wayman CM. (1998) Shape Memory Materials. Cambridge, Cambridge University Press.
Qader IN, Kök M, Dagdelen F, Abdullah SS. (2020) The effect of different parameters on shape memory alloys. Sakarya University Journal of Science, 24(5): 881-902.
doi: 10.16984/saufenbilder.733645 DOI: https://doi.org/10.16984/saufenbilder.733645
DesRoches R, McCormick J, Delemont M. (2004) Cyclic properties of superelastic shape memory alloy wires and bars. Journal of Structural Engineering, 130(1): 38-46.
doi:10.1061/(ASCE)0733-9445(2004)130:1(38) DOI: https://doi.org/10.1061/(ASCE)0733-9445(2004)130:1(38)
Antunes AS, Tosetti JPV, Otubo J. (2013) High shape recovery Ni–Ti SMA wire produced from electron beam melted ingot. Journal of Alloys and Compounds, 577(1): 265-267. doi:10.1016/j.jallcom.2012.03.043 DOI: https://doi.org/10.1016/j.jallcom.2012.03.043
De Araújo CJ, Gomes AAC, Silva JA, Cavalcanti AJT, Reis RPB, Gonzalez CH. (2009) Fabrication of shape memory alloys using the plasma skull push-pull process. Journal of Materials Processing Technology, 209(7): 3657-3664. doi:10.1016/j.jmatprotec.2008.08.025 DOI: https://doi.org/10.1016/j.jmatprotec.2008.08.025
Silva NJ. (2018) Estudo de ligas com memória de forma Ni-Ti processadas por laminação e extrusão angular. PhD thesis. Universidade Federal de Pernambuco, Centro de Tecnologia e Geociências.
Silva KCA. (2014) Estudo de ligas com memória de forma Ni-Ti processadas por laminação e extrusão angular. PhD thesis. Universidade Federal de Pernambuco, Centro de Tecnologia e Geociências.
Figueiredo AM, Modenesi P, Buono V. (2009) Low-cycle fatigue life of superelastic NiTi wires. International Journal of Fatigue, 31(4): 751-758. doi:10.1016/j.ijfatigue.2008.03.014 DOI: https://doi.org/10.1016/j.ijfatigue.2008.03.014
Segal VM. (1995) Materials processing by simple shear. Materials Science and Engineering: A, 197(2):157-164. doi:10.1016/0921-5093(95)09705-8 DOI: https://doi.org/10.1016/0921-5093(95)09705-8
Sun X, Wu DY, Kang M, Ramesh KT, Kecskes LJ. (2023) Properties and hardening behavior of equal channel angular extrusion processed Mg-Al binary alloys. Materials Characterization, 195: 112514. doi:10.1016/j.matchar.2022.112514 DOI: https://doi.org/10.1016/j.matchar.2022.112514
Yang Z, Li H, Zhang Y, Liu X, Gu Q, Liu X. (2022) ECAP based regulation mechanism of shape memory properties of NiTiNb alloys. Journal of Alloys and Compounds, 897: 163184. doi:10.1016/j.jallcom.2021.163184 DOI: https://doi.org/10.1016/j.jallcom.2021.163184
Leitner T, Sabirov I, Pippan R, Hohenwarter A. (2017) The effect of severe grain refinement on the damage tolerance of a superelastic NiTi shape memory alloy. Journal of the Mechanical Behavior of Biomedical Materials, 71:337-348. doi:10.1016/j.jmbbm.2017.03.020 DOI: https://doi.org/10.1016/j.jmbbm.2017.03.020
Jiang SY, Yu JB, Zhang YQ, Xing XD. (2020) Mechanically-induced martensite transformation of NiTiFe shape memory alloy subjected to plane strain compression. Trans. Nonferrous Met. Soc. China, 30: 1325-1334. doi:10.1016/S1003-6326(20)65299-2 DOI: https://doi.org/10.1016/S1003-6326(20)65299-2
Zhang J, Chen T, Li W, Bednarcik J, Dippel AC. (2020) High temperature superelasticity realized in equiatomic Ti-Ni conventional shape memory alloy by severe cold rolling. Materials and Design, 193: 1008875. doi:10.1016/j.matdes.2020.108875 DOI: https://doi.org/10.1016/j.matdes.2020.108875
Liang Q, Zhao S, Liang C, Zhao T, Wang D, Ding X, Li S, Wang Y, Zheng Y, Ren X, Mills M, Wang Y. (2022) Strain states and unique properties in cold-rolled TiNi shape memory alloys. Acta Materialia, 231: 117890, 2022. doi:10.1016/j.actamat.2022.117890 DOI: https://doi.org/10.1016/j.actamat.2022.117890
Silva TTL. (2022) Comportamento termoelástico de fios de Ni-Ti com efeito memória de forma processados por laminação a frio. PhD thesis. Universidade Federal de Pernambuco, Centro de Tecnologia e Geociências.
Silva TTL, Virgolino FSS, Oliveira CAN, de Araújo CJ, Gonzalez CH. (2021) Fabricação de uma liga equiatômica de TiNi com efeito memória de forma pelo método plasma skul-push pull. Revista Engenharia e Tecnologia, 13(4): 270-280. Retrieved from https://revistas.uepg.br/index.php/ret/article/view/19659
Simões JB. (2017) Fabricação de componentes miniaturizados de ligas com memória de forma NITI usando fundição de precisão. João Pessoa, Ideia. DOI: https://doi.org/10.26678/ABCM.CONEM2018.CON18-0174
Virgolino FSS. (2017) Comportamento em fadiga termomecânica de fios de liga com memória de forma Ni-Ti-Cu. Dissertation. Universidade Federal de Pernambuco, Centro de Tecnologia e Geociência.
Aghamiri SMS, Ahmadabadin MN, Shahmir H, Naghdi F, Raygan S. (2013) Study of thermomechanical treatment on mechanical-induced phase transformation of NiTi and TiNiCu wires. Journal of the mechanical behavior of biomedical materials, 21: 32-36. doi:10.1016/j.jmbbm.2013.01.014 DOI: https://doi.org/10.1016/j.jmbbm.2013.01.014
Karaca HE, Kaya I, Tobe H, Basaran B, Nagasako M, Kainuma R, Chumlyakov S. (2013) Shape memory behavior of high strength Ni54Ti46 alloys. Materials Science & Engineering, 580: 66-70. doi:10.1016/j.msea.2013.04.102 DOI: https://doi.org/10.1016/j.msea.2013.04.102
Khaleghi F, Allafi JK, Chianeh VA, Noori S. (2013) Effect of short-time annealing treatment on the superelastic behavior of cold drawn Ni-rich NiTi shape memory wires. Journal of Alloys and Compounds, 554: 32-38. doi:10.1016/j.jallcom.2012.11.183 DOI: https://doi.org/10.1016/j.jallcom.2012.11.183
Van Humbeeck J. (2003) Damping capacity of thermoelastic martensite in shape memory alloys. Journal of Alloys and Compounds, 335(1-2): 58-64.
doi:10.1016/S0925-8388(03)00268-8 DOI: https://doi.org/10.1016/S0925-8388(03)00268-8
Oliveira CAN, Gonzalez CH, De Araújo CJ, Araujo Filho OO, Urtiga Filho SUL. (2010) Thermoelastic Properties on Cu-Zn-Al Shape Memory Springs. Materials Research, 13(2): 219-223. doi:10.1590/S1516-14392010000200016 DOI: https://doi.org/10.1590/S1516-14392010000200016
Gonzalez CH, De Araújo CJ, Quadros NF, Guénin G, Morin M. (2004) Study of Martensitic Stabilization Under Stress in Cu–Al–Be Shape Memory Alloy Single Crystal. Materials Science and Engineering, 378(1-2): 253-256. doi:10.1016/j.msea.2003.11.069 DOI: https://doi.org/10.1016/j.msea.2003.11.069
Yoshida I, Ono T, Asai M. (2000) Internal friction of Ti-Ni alloys. Journal of Alloys and Compounds, 310(1-2):339-343. doi:10.1016/S0925-8388(00)00957-9 DOI: https://doi.org/10.1016/S0925-8388(00)00957-9
Yoshida I, Monma D, Iino K, Ono T, Otsuka K, Asai M. (2004) Internal friction of Ti-Ni-Cu ternary shape memory alloys, Mat Sci. Engineering Structures, 370(1-2): 444-448. doi:10.1016/j.msea.2003.05.003 DOI: https://doi.org/10.1016/j.msea.2003.05.003
Genlian Fan YZ, Otsuka K, Ren X. (2006) Ultrahigh damping in R-phase state of Ti-Ni-Fe alloy. Applied Physics Letters, 89:3. doi:10.1063/1.2363173 DOI: https://doi.org/10.1063/1.2363173
Ma Y, Du Z, Cui X, Cheng J, Liu G, Gong T. et al. (2018) Effect of cold rolling process on microstructure and mechanical properties of high strength ? titanium alloy thin sheets. Progress in Natural Science: Materials International, 28(6): 711-717. doi:10.1016/j.pnsc.2018.10.004 DOI: https://doi.org/10.1016/j.pnsc.2018.10.004
Sadeghpour S, Abbasi SM, Morakabati M, Karjalainen LP, Porter DA. (2018) Effect of cold rolling and subsequent annealing on grain refinement of a beta titanium alloy showing stress-induced martensitic transformation. Materials Science and Engineering: A, 731: 465-478. doi:10.1016/j.msea.2018.06.050 DOI: https://doi.org/10.1016/j.msea.2018.06.050
Lu XL, Cai W, Zhao LC. (2003) Damping behavior of a Ti44Ni47Nb9 shape memory alloy. Journal of Materials Science Letters, 22: 1243-1245. doi:10.1023/A:1025445832316 DOI: https://doi.org/10.1023/A:1025445832316
Van Humbeeck J, Liu Y (2000). The High Damping Capacity of Shape Memory Alloys. Springer-Verlag. https://doi.org/10.1007/978-3-642-59768-8_4 DOI: https://doi.org/10.1007/978-3-642-59768-8_4
Oliveira CAN, Gonzalez CH, Araujo Filho OO, Silva NJ, Guimaraes PB, Mendonza EN et al. (2015) Thermomechanical Analysis on Ti-Ni Shape Memory Helical Springs Under Cyclic Tensile Loads. Mat. Res., 18(2): 17-24. doi:10.1590/1516-1439.334514 DOI: https://doi.org/10.1590/1516-1439.334514
Wu SK, Lin HC. (2003) Damping characteristics of TiNi binary and ternary shape memory alloys. Journal of alloys and compounds, 355(1-2): 72-78.
doi:10.1016/S0925-8388(03)00279-2 DOI: https://doi.org/10.1016/S0925-8388(03)00279-2
Jiang SY, Zhang YQ. (2012) Microstructure evolution and deformation behavior of as-cast Ni-Ti shape memory alloy under compression. Transactions of Nonferrous Metals Society of China, 22(1): 90-96. doi:10.1016/S1003-6326(11)61145-X DOI: https://doi.org/10.1016/S1003-6326(11)61145-X
Bhagyaraj J, Ramaiah KV, Saikrishna CN, Bhaumik SK, Gouthama. (2013) Behavior and effect of Ti2Ni phase during processing of Ni-Ti shape memory alloy wire from cast ingot. Journal of Alloys and Compounds, 581: 344-351. doi:10.1016/j.jallcom.2013.07.046 DOI: https://doi.org/10.1016/j.jallcom.2013.07.046
Duerig TW, Bhattacharya K. (2015) The Influence of the R-Phase on the Superelastic Behavior of NiTi. Shape Memory and Superelasticity, 1: 153-161.
doi:10.1007/s40830-015-0013-4 DOI: https://doi.org/10.1007/s40830-015-0013-4
Chen Y, Jiang HC, Liu SW, Rong LJ, Zhao XQ. (2009) Damping capacity of TiNi-based shape memory alloys. Journal of Alloys and Compounds, 482(1-2): 151-154. doi:10.1016/j.jallcom.2009.03.148 DOI: https://doi.org/10.1016/j.jallcom.2009.03.148
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.