A Hybrid of Kansei Engineering (KE) And Analytical Hierarchy Process (AHP) to Develop Conceptual Designs of Portable Oil Spill Skimmer
DOI:
https://doi.org/10.31436/iiumej.v24i1.2426Keywords:
Kansei Engineering, Product Development Process, Oil Spill Skimmer, User Oriented Design, Analytical Hierarchy ProcessAbstract
Currently, there are huge demands on developing a design that fulfils the characteristics of performance, cost, safety, and aesthetics. However, the conceptual design stages in industrial products lack the involvement of user requirements as it is typically focused on the product's performance. Consequently, specific criteria such as the product's ease of use, safety, and robustness cannot be compared and measured when designing industrial products. Owing to this reason, this research proposes a new technique that integrates Kansei Engineering with Analytical Hierarchy Process (AHP) to address the issue. The research objective is to investigate an oil spill skimmer's user and technical requirements by incorporating the Kansei Engineering method. The approach to carry out this research is to incorporate the Kansei and the basic AHP methods. Kansei Engineering will suggest the required design elements that must be included to design and fabricate a portable oil spill skimmer. At the same time, the AHP method is used to select the best design based on the developed conceptual design. The effectiveness of the proposed method was verified by comparing it with other established methods, such as TOPSIS (Technique of Order Preference by Similarity to Ideal Solution). Moreover, sensitivity analysis was used to investigate the robustness of the AHP result. There are 5 conceptual designs in total, assessed in this research. The result showed that out of the 5 conceptual designs, design number 3 has the highest ranking (priority ranking = 0.2603). Thus, the most suitable conceptual design for the portable oil spill skimmer to be fabricated is design 3. The finding also shows that the result from AHP was valid and robust.
ABSTRAK: Pada masa kini, terdapat permintaan besar bagi membangunkan reka bentuk yang memenuhi ciri-ciri prestasi, kos, keselamatan dan estetika. Walau bagaimanapun, industri kurang melibatkan keperluan pengguna pada peringkat reka bentuk konsep produk industri, kerana ia biasanya tertumpu pada prestasi produk. Ini menyebabkan kriteria khusus seperti kemudahan menggunakan produk, keselamatan dan keteguhan produk tidak dapat dibandingkan dan diukur semasa mereka bentuk produk industri. Disebabkan faktor berkenaan, kajian ini mencadangkan teknik baharu yang mengintegrasikan Kejuruteraan Kansei bersama Proses Hierarki Analitik (AHP) bagi menangani isu tersebut. Objektif kajian adalah bagi menyiasat keperluan pengguna dan keperluan teknikal menyaring tumpahan minyak dengan menggabungkan kaedah Kejuruteraan Kansei. Pendekatan kajian ini adalah dengan menggabungkan Kansei dan kaedah asas AHP. Kejuruteraan Kansei mencadangkan elemen reka bentuk yang diperlukan yang mesti disertakan bagi mereka bentuk dan menyaring tumpahan minyak mudah alih. Pada masa sama, kaedah AHP digunakan bagi memilih reka bentuk terbaik berdasarkan reka bentuk konsep yang dibangunkan. Keberkesanan kaedah yang dicadangkan telah disahkan dengan membandingkannya dengan kaedah lain yang telah terbukti, seperti TOPSIS (Teknik Aturan Kehendak Berdasarkan Persamaan dengan Solusi Ideal). Selain itu, analisis sensitiviti digunakan bagi mengkaji keteguhan keputusan AHP. Terdapat 5 reka bentuk konseptual yang dinilai dalam kajian ini. Dapatan kajian menunjukkan bahawa reka bentuk nombor 3 mempunyai keputusan tertinggi (keutamaan kedudukan = 0.2603) daripada 5 reka bentuk konseptual ini. Oleh itu, reka bentuk konsep yang paling sesuai bagi saringan tumpahan minyak mudah alih yang akan dibina adalah reka bentuk 3. Dapatan kajian juga menunjukkan bahawa hasil daripada AHP adalah sah dan kukuh.
Downloads
Metrics
References
Gan Y, Ji Y, Jiang S, Liu X, Feng Z, Li Y, Liu Y. (2021) Integrating aesthetic and emotional preferences in social robot design: An affective design approach with Kansei Engineering and Deep Convolutional Generative Adversarial Network. Int J Ind Ergon. https://doi.org/10.1016/j.ergon.2021.103128 DOI: https://doi.org/10.1016/j.ergon.2021.103128
Mondragón S, Company P, Vergara M. (2005) Semantic Differential applied to the evaluation of machine tool design. Int J Ind Ergon. https://doi.org/10.1016/j.ergon.2005.05.001. DOI: https://doi.org/10.1016/j.ergon.2005.05.001
Marini CD, Fatchurrohman N, Azhari A, Suraya S. (2016) Product Development using QFD, MCDM and the Combination of these Two Methods. IOP Conference Series: Materials Science and Engineering. http://dx.doi.org/10.1088/1757-899X/114/1/012089. DOI: https://doi.org/10.1088/1757-899X/114/1/012089
Azammi AN, Sapuan SM, Ishak MR, Sultan MT. (2018) Conceptual design of automobile engine rubber mounting composite using TRIZ-Morphological chart-analytic network process technique. Defence Technology, 14(4): 268-277. https://doi.org/10.1016/j.dt.2018.05.009. DOI: https://doi.org/10.1016/j.dt.2018.05.009
Zhu GN, Hu J, Ren H. (2020) A fuzzy rough number-based AHP-TOPSIS for design concept evaluation under uncertain environments. Applied Soft Computing Journal, 91: 106228.
https://doi.org/10.1016/j.asoc.2020.106228. DOI: https://doi.org/10.1016/j.asoc.2020.106228
Renzi C, Leali F, Di Angelo L. (2017) A review on decision-making methods in engineering design for the automotive industry. Journal of Engineering Design, 28(2): 118-143.
https://doi.org/10.1080/09544828.2016.1274720. DOI: https://doi.org/10.1080/09544828.2016.1274720
Rosli MU, Ariffin MKA, Sapuan SM, Sulaiman S. (2013) Integrating TRIZ and AHP: A MPV’s Utility Compartment Improvement Design Concepts. International Journal of Materials, Mechanics and Manufacturing, 1(1): 32-35. https://doi.org/10.7763/IJMMM.2013.V1.7. DOI: https://doi.org/10.7763/IJMMM.2013.V1.7
Turan FM, Omar B. (2013) The integration of HOQ and fuzzy-AHP for design concept evaluation. Applied Mechanics and Materials, 315: 25-29.
https://doi.org/10.4028/www.scientific.net/AMM.315.25. DOI: https://doi.org/10.4028/www.scientific.net/AMM.315.25
Tiwari V, Jain PK, Tandon P. (2016) Product design concept evaluation using rough sets and VIKOR method. Advanced Engineering Informatics, 30(1): 16-25.
https://doi.org/10.1016/j.aei.2015.11.005. DOI: https://doi.org/10.1016/j.aei.2015.11.005
Song J, Lu Y, Luo J, Huang S, Wang L, Xu W, Parkin IP. (2015) Barrel-shaped oil skimmer designed for collection of oil from spills. Advanced materials interfaces, 2(15): 1-8.
https://doi.org/10.1002/admi.201500350. DOI: https://doi.org/10.1002/admi.201500350
Kumar SA, Pawar SH, Vishu A, Yashodhan P, Mayuresh P. (2020) Design and fabrication of Oil Collector. International Journal of Progressive Research in Science and Engineering, 1(3): 167-185.
Patil P, Shinde P, Shetty A, Lodha S, Vaidya N. (2017) Design and Fabrication of Oil Skimmer. International Research Journal of Engineering and Technology, 4(5): 2282-2284.
Rahman MA, Manojkumar S, Seenivasan M, Sivaa GM, Vignesh R. (2018) Design and Fabrication of Oil Skimmer. International Research Journal of Engineering and Technology, 6(4): 4-6.
Siva S, Praveen P. (2017) Design and Fabrication of Belt Type Oil Skimmer. International Journal of Engineering Research & Technology (IJERT), 5(7): 1-5.
Abidli A, Huang Y, Cherukupally P, Bilton AM, Park CB. (2020) Novel separator skimmer for oil spill cleanup and oily wastewater treatment: From conceptual system design to the first pilot-scale prototype development. Environ Technol Innov, 18: 100598. https://doi.org/10.1016/j.eti.2019.100598. DOI: https://doi.org/10.1016/j.eti.2019.100598
Nagamachi M. (2008) Perspectives and the new trend of Kansei/affective engineering. The TQM Journal, 20(4): 290-298. https://doi.org/10.1108/17542730810881285. DOI: https://doi.org/10.1108/17542730810881285
Ramanathan R, Abdullah L, Mohamed MS. (2021) The Utilisation of Kansei Engineering in Designing Conceptual Design of Oil Spill Skimmer. In Symposium on Intelligent Manufacturing and Mechatronics, 25: 434-447. https://doi.org/10.1007/978-981-16-8954-3_41. DOI: https://doi.org/10.1007/978-981-16-8954-3_41
Ekolu SO, Quainoo H. (2019) Reliability of assessments in engineering education using Cronbach’s alpha, KR and split-half methods. Journal of Engineering Education, 21(1): 24-29.
Waris M, Panigrahi S, Mengal A, Soomro MI, Mirjat NH, Ullah M, Azlan ZS, Khan A. (2019) An application of analytic hierarchy process (AHP) for sustainable procurement of construction equipment: Multicriteria-based decision framework for Malaysia. Journal of Mathematical Problem in Engineering. https://doi.org/10.1155/2019/6391431. DOI: https://doi.org/10.1155/2019/6391431
Sindhu S, Nehra V, Luthra S. (2017) Investigation of feasibility study of solar farms deployment using hybrid AHP-TOPSIS analysis: Case study of India. Renewable and Sustainable Energy Reviews, (73): 496-511. https://doi.org/10.1016/j.rser.2017.01.135. DOI: https://doi.org/10.1016/j.rser.2017.01.135
Darko A, Chan APC, Ameyaw EE, Owusu EK, Pärn E, Edwards DJ. (2019) Review of application of analytic hierarchy process (AHP) in construction. International Journal of Construction Management, 19: 436-452. https://doi.org/10.1080/15623599.2018.1452098. DOI: https://doi.org/10.1080/15623599.2018.1452098
Doloi H. (2008) Application of AHP in improving construction productivity from a management perspective. Construction Management and Economics, 26(8): 841-854.
https://doi.org/10.1080/01446190802244789. DOI: https://doi.org/10.1080/01446190802244789
Schot J, Fischer K. (1993) Introduction: The Greening of the Industrial Firm, Volume 3. Island Press; pp 3-33.
Cheng EW, Li H, Ho DC. (2002) Analytic hierarchy process (AHP):A defective tool when used improperly. Measuring Business Excellence, 6(4): 33-37.
https://doi.org/10.1108/13683040210451697. DOI: https://doi.org/10.1108/13683040210451697
Jain V, Sangaiah AK, Sakhuja S, Thoduka N, Aggarwal R. (2018) Supplier selection using fuzzy AHP and TOPSIS: a case study in the Indian automotive industry. Neural Computing Applications, 29: 555-564. https://doi.org/10.1007/s00521-016-2533-z. DOI: https://doi.org/10.1007/s00521-016-2533-z
Parameshwaran MA, Sivaraj S, Venkataram N. (2019) Numerical Simulation and Experimental Validation of Planetary gearbox System Design to Govern Constant Generator Speed in Hydro Power Plant. In IOP Conference Series: Materials Science and Engineering, https://doi.org/10.1088/1757-899X/624/1/012008. DOI: https://doi.org/10.1088/1757-899X/624/1/012008
Abdullah L, Jamaludin Z, Chiew TH, Rafan NA, Mohamed MS. (2012) System identification of XY table ballscrew drive using parametric and non parametric frequency domain estimation via deterministic approach. Procedia Engineering, 41: 567-574.
https://doi.org/10.1016/j.proeng.2012.07.213. DOI: https://doi.org/10.1016/j.proeng.2012.07.213
Escudero GG, Bo P, González-Barrio H, Calleja-Ochoa A, Barto? M, de Lacalle LNL. (2022) 5-axis double-flank CNC machining of spiral bevel gears via custom-shaped tools—Part II: physical validations and experiments. International Journal of Advanced Manufacturing Technology, 119(3-4): 1647-1658. https://doi.org/10.1007/s00170-021-08166-0 DOI: https://doi.org/10.1007/s00170-021-08166-0
Haddad M, Sanders D. (2018) Selection of discrete multiple criteria decision making methods in the presence of risk and uncertainty. Operations Research Perspectives, 5: 357-370.
https://doi.org/10.1016/j.orp.2018.10.003. DOI: https://doi.org/10.1016/j.orp.2018.10.003
Vaske JJ, Beaman J, Sponarski CC. (2016) Rethinking Internal Consistency in Cronbach’s Alpha. Leisure Science, 39: 163-173. https://doi.org/10.1080/01490400.2015.1127189. DOI: https://doi.org/10.1080/01490400.2015.1127189
Dey PK. (2004) Analytic hierarchy process helps evaluate project in Indian oil pipelines industry. International Journal of Operations and Production Management, 24: 588-604.
https://doi.org/10.1108/01443570410538122. DOI: https://doi.org/10.1108/01443570410538122
Al-Marri AN, Nechi S, Ben-Ayed O, Charfeddine L. (2020) Analysis of the performance of TAM in oil and gas industry: Factors and solutions for improvement. Energy Reports, 6: 2276–2287. https://doi.org/10.1016/j.egyr.2020.08.012. DOI: https://doi.org/10.1016/j.egyr.2020.08.012
Bandyopadhyay S. (2019) Introduction to production and operations concept. Production and Operations Analysis: Traditional, Latest, and Smart Views. 1st edition CRC Press; pp 1-8. DOI: https://doi.org/10.1201/9781351113670-1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Funding data
-
Fakulti Kejuruteraan Pembuatan, Universiti Teknikal Malaysia Melaka,Universiti Teknikal Malaysia Melaka
Grant numbers PJP/2020/FKP/PP/S01775