Higher Derivative Block Method with Generalised Steplength for Solving First-Order Fuzzy Initial Value Problems

Authors

DOI:

https://doi.org/10.31436/iiumej.v24i1.2380

Keywords:

Fuzzy Initial Value Problem, First-Order, Generalised Steplength, Block Method, Higher Derivative, Charging and Discharging of Capacitor

Abstract

Block methods have been adopted in studies for solving first and higher order differential equations due to its impressive accuracy property. Taking a step further to improve this accuracy, researchers have considered the inclusion of higher-derivative terms in the block method, although this has been limited to the presence of one higher-derivative term in previous studies. Hence, this article aims at better accuracy by introducing two higher-derivative terms in the block method. In addition, this article presents a scheme with generalised step length such that there is flexibility on the choice of step length when developing the block method. The generalised step length scheme is adopted to develop a three-step block method for solving first-order fuzzy initial value problems. Its properties to ensure convergence and to show the region of absolute stability is investigated, and problems relating to charging and discharging of capacitor are considered. The absolute error shows the impressive accuracy of the three-step block method including obtaining the same values as the exact solution. Therefore, in addition to the new generalised algorithm presented in this article, a new three-step method for solving linear and nonlinear first order fuzzy initial value problems is presented.

ABSTRAK: Kaedah blok digunakan dalam banyak kajian untuk menyelesaikan persamaan pembezaan peringkat pertama dan peringkat tinggi kerana sifat ketepatannya yang baik. Bagi meningkatkan ketepatan ini, penyelidik telah mengambil kira dengan memasukkan terbitan peringkat tinggi dalam kaedah blok, walaupun ini terhad pada satu sebutan terbitan peringkat tinggi dalam kajian sebelum. Oleh itu, kajian ini bertujuan bagi mendapatkan ketepatan yang lebih baik dengan memperkenalkan dua sebutan terbitan peringkat tinggi dalam kaedah blok. Tambahan, kajian ini memperkenalkan skema dengan panjang-langkah kaki biasa supaya terdapat kebolehlenturan pada pilihan langkah semasa membangunkan kaedah blok. Skema ini diadaptasi bagi membangunkan kaedah blok tiga-langkah bagi menyelesai masalah nilai awal peringkat pertama secara rawak. Ciri-ciri terperinci dikaji bagi memastikan penumpuan lingkungan kestabilan mutlak, dan masalah berkaitan pengecasan dan nyahcas kapasitor juga turut diambil kira. Ralat mutlak menunjukkan ketepatan yang mengkagumkan pada kaedah blok tiga-langkah termasuk mendapatkan nilai yang sama seperti penyelesaian. Oleh itu, tambahan pada algoritma ini, kaedah tiga-langkah bagi menyelesaikan linear dan tidak linear pada masalah nilai awal peringat pertama secara rawak diperkenalkan.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ahmady N, Allahviranloo T, Ahmady E. (2020) A modified Euler method for solving fuzzy differential equations under generalized differentiability. Computational and Applied Mathematics, 39(2):1-21. Doi: https://doi.org/10.1007/s40314-020-1112-1 DOI: https://doi.org/10.1007/s40314-020-1112-1

Kodal Sevindir H, Cetinkaya S, Tabak G. (2018) On numerical solutions of fuzzy differential equations. International Journal of Development Research, 8(9): 22971- 22979. Doi: https://www.researchgate.net/publication/329737810

Ahmadian A, Salahshour S, Chan CS, Baleanu D. (2018) Numerical solutions of fuzzy differential equations by an efficient Runge–Kutta method with generalized differentiability. Fuzzy Sets and Systems, 331: 47-67. Doi: https://doi.org/10.1016/j.fss.2016.11.013 DOI: https://doi.org/10.1016/j.fss.2016.11.013

Jameel AF, Saleh HH, Azmi A, Alomari AK, Anakira NR, Man NH. (2022) Efficient approximate analytical methods for nonlinear fuzzy boundary value problem. International Journal of Electrical & Computer Engineering, 12(2): 1916-1928. Doi: https://doi.org/10.11591/ijece.v12i2.pp1916-1928 DOI: https://doi.org/10.11591/ijece.v12i2.pp1916-1928

Maghool FH, Radhy ZH, Mehdi HA, Abass HM. (2019) Simpson's rule to solve fuzzy differential equations. International Journal of Advanced Research in Science, Engineering and Technology, 6(10): 11306-11315. Doi: https://www.researchgate.net/publication/337941473

Fariborzi Araghi MA, Barzegar Kelishami H. (2021) Numerical accuracy of the predictor-corrector method to solve fuzzy differential equations based on the stochastic arithmetic. Fuzzy Information and Engineering, 12(3): 335-354. Doi: https://doi.org/10.1080/16168658.2021.1880134 DOI: https://doi.org/10.1080/16168658.2021.1880134

Shang D, Guo X. (2013) Adams predictor-corrector systems for solving fuzzy differential equations. Mathematical Problems in Engineering, 2013(1): 1-12. Doi: https://doi.org/10.1155/2013/312328 DOI: https://doi.org/10.1155/2013/312328

Allahviranloo T, Abbasbandy S, Ahmady N, Ahmady E. (2009) Improved predictor–corrector method for solving fuzzy initial value problems. Information Sciences, 179(7): 945-55. Doi: https://doi.org/10.1016/j.ins.2008.11.030 DOI: https://doi.org/10.1016/j.ins.2008.11.030

Isa S, Abdul Majid Z, Ismail F, Rabiei F. (2018) Diagonally implicit multistep block method of order four for solving fuzzy differential equations using Seikkala derivatives. Symmetry, 10(2): 42-53. Doi: https://doi.org/10.3390/sym10020042 DOI: https://doi.org/10.3390/sym10020042

Ramli A, Abdul Majid Z. (2016) Fourth order diagonally implicit multistep block method for solving fuzzy differential equations. International Journal of Pure and Applied Mathematics, 107(3): 635-660. Doi: https://doi.org/10.12732/ijpam.v107i3.12 DOI: https://doi.org/10.12732/ijpam.v107i3.12

Mohd Zawawi IS, Ibrahim ZB, Suleiman M. (2013) Diagonally implicit block backward differentiation formulas for solving fuzzy differential equations. In AIP Conference Proceedings, 1522(1), 681-687. Doi: https://doi.org/10.1063/1.4801191 DOI: https://doi.org/10.1063/1.4801191

Barnabas B. (2013) Fuzzy sets. In Mathematics of Fuzzy Sets and Fuzzy Logic, pp. 1-12: Springer. Doi: https://doi.org/10.1007/978-3-642-35221-8_1 DOI: https://doi.org/10.1007/978-3-642-35221-8_1

Zimmermann HJ. (2010) Fuzzy set theory. Wiley Interdisciplinary Reviews: Computational Statistics, 2,(3): 317-320. Doi: https://doi.org/10.1002/wics.82 DOI: https://doi.org/10.1002/wics.82

Madan PL, Ralescu DA. (1983) Differentials of fuzzy functions. Journal of Mathematical Analysis and Applications, 91(2): 552-558. Doi: https://doi.org/10.1016/0022-247X(83)90169-5 DOI: https://doi.org/10.1016/0022-247X(83)90169-5

Babakordi F, Allahviranloo T. (2021) A new method for solving fuzzy Bernoulli differential equation. Journal of Mathematical Extension, 15(4): 1-20. Doi: https://doi.org/10.30495/JME.2021.1704

Hashim HA, Shather A., Jameel AF, Saaban A. (2019) Numerical solution of first order nonlinear fuzzy initial value problems by six-stage fifth-order Runge-Kutta method. International Journal of Innovative Technology and Exploring Engineering, 8(5): 166-170. Doi: https://www..net/2/publication/332141468

Sindu DS, Ganesan K. (2017) An approximate solution by fuzzy Taylor’s method. International Journal of Pure and Applied Mathematics, 113(13): 236-44. Doi: https://acadpubl.eu/jsi/2017-113-pp/articles/13/26.pdf

Adeyeye O, Omar Z. (2019) Direct solution of initial and boundary value problems of third order ODEs using maximal order fourth-derivative block method. In AIP Conference Proceedings, 2138: 030002_1-030002_6. Doi: https://doi.org/10.1063/1.5121039 DOI: https://doi.org/10.1063/1.5121039

Hohenauer W. (2018) Hohenauer-Physical Modelling Based on First Order Odes. Doi: https://simiode.org/resources/4448

Ahmad MZ, Hasan MK, De Baets B. (2013) Analytical and numerical solutions of fuzzy differential equations. Information Sciences, 236: 156-167. Doi: https://doi.org/10.1016/j.ins.2013.02.026 DOI: https://doi.org/10.1016/j.ins.2013.02.026

Jameel AF, Ismail AIM. (2015) Approximate solution of first order nonlinear fuzzy initial value problem with two different fuzzifications. Journal of Uncertain Systems, 9(3): 221-229. Doi: http://www.worldacademicunion.com/journal/jus/jusVol09No3paper06.pdf

Downloads

Published

2023-01-04

How to Cite

Hussain, K., Adeyeye, O., & Ahmad, N. (2023). Higher Derivative Block Method with Generalised Steplength for Solving First-Order Fuzzy Initial Value Problems. IIUM Engineering Journal, 24(1), 158–169. https://doi.org/10.31436/iiumej.v24i1.2380

Issue

Section

Engineering Mathematics and Applied Science