Solar Thermal Process Parameters Forecasting for Evacuated Tubes Collector (ETC) Based on RNN-LSTM

Authors

DOI:

https://doi.org/10.31436/iiumej.v24i1.2374

Keywords:

Solar energy, Machine learning techniques, Artificial Neural Networks (ANNs), Stock Market, Prediction, Stock Exchange, Backpropagation, FeedForward.

Abstract

Solar Heat for Industrial Process (SHIP) systems are a clean source of alternative and renewable energy for industrial processes. A typical SHIP system consists of a solar panel connected with a thermal storage system along with necessary piping. Predictive maintenance and condition monitoring of these SHIP systems are essential to prevent system downtime and ensure a steady supply of heated water for a particular industrial process. This paper proposes the use of recurrent neural network-based predictive models to forecast solar thermal process parameters. Data of five process parameters namely - Solar Irradiance, Solar Collector Inlet & Outlet Temperature, and Flux Calorimeter Readings at two points were collected throughout a four-month period. Two variants of RNN, including LSTM and Gated Recurrent Units, were explored and the performance for this forecasting task was compared. The results show that Root Mean Square Errors (RMSE) between the actual and predicted values were 0.4346 (Solar Irradiance), 61.51 (Heat Meter 1), 23.85 (Heat Meter 2), Inlet Temperature (0.432) and Outlet Temperature (0.805) respectively. These results open up possibilities for employing a deep learning based forecasting method in the application of SHIP systems.

ABSTRAK: Penggunaan sumber bersih seperti Tenaga Solar dalam Proses Industri (SHIP) adalah satu kaedah alternatif untuk menhasilkan tenaga yang boleh diperbaharui bagi mengurangkan kesan gas rumah hijau yang terhasil dari proses industri. Sistem SHIP biasanya mengandungi panel solar dan sistem penyimpanan haba yang berhubung melalui paip yang sesuai. Penyelengaraan secara berkala diperlukan bagi memastikan sistem ini sentiasa membekalkan tenaga solar pada kadar bersesuaian dan bekalan tenaga solar yang terhasil berterusan dan tidak menjejaskan sistem pemanasan air bagi sesuatu proses industri. Kajian ini mencadangkan penggunaan model ramalan rangkaian neural berulang bagi meramal parameter proses pemanasan solar. Kelima-lima parameter proses iaitu – Iradiasi Solar, Suhu Saluran Keluar & Masuk Pengumpul Solar dan Bacaan Kalorimeter Fluks pada dua tempat diambil sepanjang empat bulan (dari Julai 2021 sehingga Oktober 2021). Dapatan menunjukkan dua varian RNN termasuk LSTM dan Unit Berulang dapat dibanding prestasinya bagi tugas ramalan ini. Dapatan kajian menunjukkan Ralat Punca Min Kuasa Dua (RMSE) antara bacaan sebenar dan ramalan adalah masing-masing 0.4346 (Iradiasi Solar), 61.51 (Meter Terma 1), 23.85 (Meter Terma 2), Suhu Salur Masuk (0.432) and Suhu Salur Keluar (0.805). Ini membuka peluang kajian mendalam berdasarkan kaedah ramalan dalam aplikasi sistem SHIP.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Apergis N, Payne JE. (2012) Renewable and non-renewable energy consumption-growth nexus: Evidence from a panel error correction model, Energy Economics, 34(3): 733-738. DOI: https://doi.org/10.1016/j.eneco.2011.04.007

Can Tansel Tugcu, Ilhan Ozturk and Alper Aslan. (2012) Renewable and non-renewable energy consumption and economic growth relationship revisited: Evidence from G7 countries, Energy Economics, 34(6): 1942-1950. DOI: https://doi.org/10.1016/j.eneco.2012.08.021

Guney T. (2019) Renewable energy, non-renewable energy and sustainable development, International Journal of Sustainable Development & World Ecology, 26(5): 389-397. DOI: https://doi.org/10.1080/13504509.2019.1595214

Kim D, Kim KT., Park YK. (2020) A Comparative Study on the Reduction Effect in Greenhouse Gas Emissions between the Combined Heat and Power Plant and Boiler. Sustainability, 12(12): 5144-5155. DOI: https://doi.org/10.3390/su12125144

Yaguo L, Naipeng L, Liang, Ningbo L, Tao Y and Jing L. (2018) Machinery health prognostics: A systematic review from data acquisition to RUL prediction, Mechanical Systems and Signal Processing. 104: 799-834. DOI: https://doi.org/10.1016/j.ymssp.2017.11.016

Zhang Y, Xiong R, He H, and Pecht MG. (2018) Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries. IEEE Transactions on Vehicular Technology, 67(7): 5695-5705. DOI: https://doi.org/10.1109/TVT.2018.2805189

Zhao R, Ruqiang Y, Jinjiang W, and Kezhi M. (2017) Learning to monitor machine health with convolutional Bi-directional LSTM networks, Sensors, 17(2): 273-290 DOI: https://doi.org/10.3390/s17020273

Haedong J, Seungtae P, Sunhee W and Seungchul L. (2016). Rotating Machinery Diagnostics Using Deep Learning on Orbit Plot Images, Procedia Manufacturing, 5: 1107-1118. DOI: https://doi.org/10.1016/j.promfg.2016.08.083

Wu Y. et al. (2016) Google’s neural machine translation system: bridging the gap between human and machine translation. Preprint at https://arxiv.org/abs/1609.08144.

Park K, Kim J and Lee J. (2019) Visual Field Prediction using Recurrent Neural Network. Sci Rep 9: 8385-8397. DOI: https://doi.org/10.1038/s41598-019-44852-6

Yuan L. (2017). Recurrent neural networks for classifying relations in clinical notes, Journal of Biomedical Informatics, 72: 85-95. DOI: https://doi.org/10.1016/j.jbi.2017.07.006

Lyu C, Chen B, Ren Y and Ji D. (2017) Long short-term memory RNN for biomedical named entity recognition. BMC bioinformatics, 18(1): 462-473. DOI: https://doi.org/10.1186/s12859-017-1868-5

Zhang F, Hu C, Yin Q, Li W, Li H-C and Hong W. (2017) Multi-Aspect-Aware Bidirectional LSTM Networks for Synthetic Aperture Radar Target Recognition. IEEE Access, 5: 26880-26891. DOI: https://doi.org/10.1109/ACCESS.2017.2773363

Chen C and Dai J. (2021) Mitigating backdoor attacks in LSTM-based text classification systems by Backdoor Keyword Identification. Neurocomputing, 452: 253-262. DOI: https://doi.org/10.1016/j.neucom.2021.04.105

Ogawa T, Sasaka Y, Maeda K and Haseyama M. (2018). Favorite Video Classification Based on Multimodal Bidirectional LSTM, IEEE Access, 6: 61401-61409. DOI: https://doi.org/10.1109/ACCESS.2018.2876710

Lan H, Gou Z and Cheng B. (2020) Regional difference of residential solar panel diffusion in Queensland, Australia, Energy Sources, Part B: Economics, Planning, and Policy, 15(1): 13-25. DOI: https://doi.org/10.1080/15567249.2020.1736214

Tsuchiya Y, Swai TA, Goto F. (2020) Energy payback time analysis and return on investment of off-grid photovoltaic systems in rural areas of Tanzania, Sustainable Energy Technologies and Assessments, 42(2020):100887-100894. DOI: https://doi.org/10.1016/j.seta.2020.100887

Ozcan O, Ersoz F. (2019) Project and cost-based evaluation of solar energy performance in three different geographical regions of Turkey: Investment analysis application, Engineering Science and Technology, an International Journal, 22(4): 1098-1106. DOI: https://doi.org/10.1016/j.jestch.2019.04.001

Gupta AK, Maity T, Anandakumar H, Chauhan YK. (2021) An electromagnetic strategy to improve the performance of PV panel under partial shading, Computers & Electrical Engineering, 90: 106896-106908. DOI: https://doi.org/10.1016/j.compeleceng.2020.106896

Mert BD, Ekinci F and Demirdelen T. (2019) Effect of partial shading conditions on off-grid solar PV/Hydrogen production in high solar energy index regions, International Journal of Hydrogen Energy, 44(51): 27713-27725. DOI: https://doi.org/10.1016/j.ijhydene.2019.09.011

Niazi K, Khan HA, and Amir F. (2018) Hot-spot reduction and shade loss minimization in crystalline-silicon solar panels. Journal of Renewable and Sustainable Energy 10(3):033506-1 - 033506-8 DOI: https://doi.org/10.1063/1.5020203

Torres JPN, Nashih SK, Fernandes CAF and Leite JC. (2018) The effect of shading on photovoltaic solar panels. Energy Systems 9: 195-208. DOI: https://doi.org/10.1007/s12667-016-0225-5

Wang D, Qi T, Liu Y, Wang Y, Fan J, Wang Y and Du H. (2020) A method for evaluating both shading and power generation effects of rooftop solar PV panels for different climate zones of China, Solar Energy, 205: 432-445. DOI: https://doi.org/10.1016/j.solener.2020.05.009

Akhter MN, Mekhilef S, Mokhlis H and Shah NM. Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques, IET Renewable Power Generation 13(7): 1009-1023 DOI: https://doi.org/10.1049/iet-rpg.2018.5649

Akhter MN, Mekhilef S, Mokhlis H, Olatomiwa L and Muhammad MA. (2020) Performance assessment of three grid-connected photovoltaic systems with combined capacity of 6.575 kWp in Malaysia. Journal of Cleaner Production, 277: 123242. DOI: https://doi.org/10.1016/j.jclepro.2020.123242

Akhter MN, Mekhilef S, Mokhlis H, Ali R , Usama M , Muhammad MA. (2022) A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems, Applied Energy, 307: 118185 DOI: https://doi.org/10.1016/j.apenergy.2021.118185

Downloads

Published

2023-01-04

How to Cite

Muhammad Ali Akbar, Ahmad Jazlan, Muhammad Mahbubur Rashid, Mohd Zaki, H. F., Muhammad Naveed Akhter, & Embong, A. H. (2023). Solar Thermal Process Parameters Forecasting for Evacuated Tubes Collector (ETC) Based on RNN-LSTM. IIUM Engineering Journal, 24(1), 256–268. https://doi.org/10.31436/iiumej.v24i1.2374

Issue

Section

Mechatronics and Automation Engineering

Funding data