Granular Subbase Improvement with Recycled Concrete Aggregates in Tropical Areas
DOI:
https://doi.org/10.31436/iiumej.v23i2.2367Keywords:
Recycled Concrete Aggregates, Natural Aggregates, Granular Subbase, Los Angeles abrasion test, Tropical zoneAbstract
Use of Recycled Concrete Aggregate (RCA) for Granular Subbase (GSB) in the tropical area is evaluated in this work. Among the materials widely studied as replacements in granular and surface layers is RCA. Its mechanical behavior in granular layers has mainly been evaluated with tests such as California Bearing Ratio (CBR). However, abrasion is also a determining property in the strength of these materials. In this study, the performance of Natural Aggregates (NA) with replacement of RCA was evaluated for use as GSB in a tropical area. Even though several laboratory tests were performed, the focus of the article lies on the performance in the Los Angeles (LA) abrasion test. Two replacement percentages of coarse RCA were considered: 10 and 15 % by weight of aggregates. The RCA and NA were characterized according to different laboratory tests: Granulometry, Absorption, Atterberg Limits test, Plasticity, Specific Gravity, and LA abrasion. In turn, all results were compared with Colombian specifications for a typical GSB in the area. In addition, a simple Life Cycle Assessment (LCA) was included to evaluate the environmental impacts of the base and alternative scenarios. The results show that GSB with 10% RCA present a higher abrasion resistance than the GSB with 15% RCA. Even better results are obtained with 10% RCA than with natural GSB. Specifically, average LA abrasion test losses of 30.86, 29.80 and 32.07% were obtained for NA, 10% RCA and 15% RCA, respectively. The LCA results show an increase of 50% and 75% in energy consumption by comparing the base scenario with 10 and 15% RCA replacement, respectively. This leads to an increase of 40 and 80% in carbon monoxide (CO) emissions for 10 and 15% RCA replacement respectively, and 100% in carbon dioxide (CO2) emissions for both alternative scenarios.
ABSTRAK: Penggunaan Agregat Konkrit Kitar Semula (RCA) bagi Subtapak Butiran (GSB) bagi kawasan tropika telah dikaji dalam kajian ini. Antara bahan yang banyak dikaji sebagai bahan ganti dalam butiran dan lapisan permukaan adalah RCA. Ciri-ciri mekanikal dalam lapisan butiran telah diuji, terutamanya dengan ujian seperti Nisbah Bearing California (CBR). Walau bagaimanapun, pelelasan juga merupakan ciri penting dalam menentukan ketahanan material. Kajian ini merupakan prestasi Agregasi Semulajadi (NA) dengan ganti RCA yang diuji bagi penggunaan GSB di kawasan tropika. Walaupun pelbagai ujian makmal telah dijalankan, fokus artikel ini terletak pada prestasi ujian pelelasan Los Angeles (LA). Dua gantian bagi peratus RCA kasar telah diambil kira: iaitu pada agregat berat 10% dan 15%. Ciri-ciri RCA dan NA dikategori berdasarkan pelbagai ujian lab yang pelbagai: Granulometri, Penyerapan, ujian Had Atterberg, Keplastikan, Graviti Tertentu dan Pelelasan LA. Kemudian, kesemua dapatan kajian dibandingkan dengan ciri-ciri Kolombia bagi ciri tipikal GSB di kawasan itu. Tambahan, Pentaksiran Kitar Hidup (LCA) yang ringkas dimasukkan bagi menilai impak terhadap alam terhadap penggunaanya pada pangkal bijirin dan pada senario alternatif. Dapatan kajian menunjukkan GSB yang menggunakan RCA 10% mempunyai rintangan lelasan tertinggi berbanding GSB dengan RCA 15%. Tambahan, dapatan kajian yang lebih baik didapati daripada RCA 10% berbanding GSB semula jadi. Terutama pada purata ujian lelasan LA telah mengalami penyusutan sebanyak 30.86, 29.80 dan 32.07% bagi NA, RCA 10% dan RCA 15%, masing-masing. Dapatan LCA menunjukkan peningkatan sebanyak 50% dan 75% pada penggunaan tenaga dengan perbandingan senario Subtapak Butiran dengan gantian RCA 10% dan 15%, masing-masing. Ini membawa kepada peningkatan sebanyak 40% dan 80% emisi karbon monoksida (CO) bagi gantian RCA 10% dan 15% masing-masing, dan emisi karbon dioksida (CO2) 100% bagi kedua-dua senario alternatif.
Downloads
Metrics
References
Tahmoorian F, Samali B, Yeaman J, Mirzababaei M. (2022) Evaluation of volumetric performance of asphalt mixtures containing recycled construction aggregate (RCA). International Journal of Pavement Engineering, 23(7): 2191-2205.
https://doi.org/10.1080/10298436.2020.1849686 DOI: https://doi.org/10.1080/10298436.2020.1849686
Tahmoorian F, Samali B. (2017) Experimental and correlational study on the utilisation of RCA as an alternative coarse aggregate in asphalt mixtures. Australian Journal of Civil Engineering, 15(2): 80-92. DOI: https://doi.org/10.1080/14488353.2017.1385964
Daquan S, Yang T, Guoqiang S, Qi P, Fan Y, Xingyi Z. (2018) Performance evaluation of asphalt mixtures containing recycled concrete aggregates. International Journal of Pavement Engineering, 19(5): 422-428. DOI: https://doi.org/10.1080/10298436.2017.1402594
Ogbonna AC. (2018) Laboratory evaluation of the characteristics of continuously reinforced concrete pavement incorporating recycled concrete aggregate. Australian Journal of Civil Engineering, 16(1): 38-45. DOI: https://doi.org/10.1080/14488353.2018.1444910
Jindal A, Ransinchung RN-GD, Kumar P. (2017) Study of pavement quality concrete mix incorporating beneficiated recycled concrete aggregates. Road Materials and Pavement Design, 18(5): 1159-1189. DOI: https://doi.org/10.1080/14680629.2016.1207556
Cai X, Wu K, Huang W, Yu J, Yu H. (2021) Application of recycled concrete aggregates and crushed bricks on permeable concrete road base. Road Materials and Pavement Design, 22(10): 2181-2196. DOI: https://doi.org/10.1080/14680629.2020.1742193
Lopez-Uceda A, Ayuso J, Jiménez JR, Galvín AP, Del Rey I. (2020) Feasibility study of roller compacted concrete with recycled aggregates as base layer for light-traffic roads. Road Materials and Pavement Design, 21(1): 276-288. DOI: https://doi.org/10.1080/14680629.2018.1483257
Aghililotf M, Palassi M, Ramezanianpour AM. (2021) Mechanical and durability assessment of unconfined recycled concrete aggregates and natural aggregates used in road constructions. International Journal of Pavement Engineering, 22(12): 1518-1530. DOI: https://doi.org/10.1080/10298436.2019.1701190
Toka EB, Olgun M. (2021) Performance of granular road base and sub-base layers containing recycled concrete aggregate in different ratios. International Journal of Pavement Engineering, 1-14. DOI 10.1080/10298436.2021.1916819 DOI: https://doi.org/10.1080/10298436.2021.1916819
Vega A DL, Santos J, Martinez-Arguelles G. (2022) Life cycle assessment of hot mix asphalt with recycled concrete aggregates for road pavements construction. International Journal of Pavement Engineering, 23(4): 923-936. DOI: https://doi.org/10.1080/10298436.2020.1778694
Martinez-Arguelles G, Coll MD, Pumarejo LGF, Cotte EHS, Rondon H, Pacheco CA, ... & Espinoza RGL. (2019) Characterization of recycled concrete aggregate as potential replacement of natural aggregate in asphalt pavement. In IOP Conference Series: Materials Science and Engineering, 471(10): 102045. DOI: https://doi.org/10.1088/1757-899X/471/10/102045
Vega A DL, Gilberto MA, dos Santos JM. (2019) Life cycle assessment of warm mix asphalt with recycled concrete aggregate. In IOP Conference Series: Materials Science and Engineering, 603(5): 052016. DOI: https://doi.org/10.1088/1757-899X/603/5/052016
Devaki H, Shanmugapriya S. (2022) LCA on construction and demolition waste management approaches: A review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.03.286 DOI: https://doi.org/10.1016/j.matpr.2022.03.286
Aytekin B, Mardani-Aghabaglou A. (2022) Sustainable Materials: A Review of Recycled Concrete Aggregate Utilization as Pavement Material. Transportation Research Record, 2676(3): 468-491. DOI: https://doi.org/10.1177/03611981211052026
Kim J. (2022) Influence of quality of recycled aggregates on the mechanical properties of recycled aggregate concretes: An overview. Construction and Building Materials, 328: 127071. DOI: https://doi.org/10.1016/j.conbuildmat.2022.127071
Colangelo F, Forcina A, Farina I, Petrillo A. (2018) Life cycle assessment (LCA) of different kinds of concrete containing waste for sustainable construction. Buildings, 8(5): 70. DOI: https://doi.org/10.3390/buildings8050070
Martinez-Arguelles G, Acosta MP, Dugarte M, Fuentes L. (2019) Life cycle assessment of natural and recycled concrete aggregate production for road pavements applications in the Northern Region of Colombia: case study. Transportation Research Record, 2673(5): 397-406. DOI: https://doi.org/10.1177/0361198119839955
Kadawo A, Sadagopan M, During O, Bolton K, Nagy A. (2021) Combination of LCA and circularity index for assessment of environmental impact of recycled aggregate concrete. Journal of Sustainable Cement-Based Materials, 1-12. https://doi.org/10.1080/21650373.2021.2004562 DOI: https://doi.org/10.1080/21650373.2021.2004562
Nayana AY, Kavitha S. (2017). Evaluation of CO2 emissions for green concrete with high volume slag, recycled aggregate, recycled water to build eco environment. Int. J. Civ. Eng. Technol, 8: 703-708.
Kurda R, Silvestre JD, de Brito J. (2018) Life cycle assessment of concrete made with high volume of recycled concrete aggregates and fly ash. Resources, Conservation and Recycling, 139: 407-417. DOI: https://doi.org/10.1016/j.resconrec.2018.07.004
Yazdanbakhsh A, Bank LC, Baez T, Wernick I. (2018) Comparative LCA of concrete with natural and recycled coarse aggregate in the New York City area. The International Journal of Life Cycle Assessment, 23(6): 1163-1173. DOI: https://doi.org/10.1007/s11367-017-1360-5
Verian KP, Ashraf W, Cao Y. (2018) Properties of recycled concrete aggregate and their influence in new concrete production. Resources, Conservation and Recycling, 133: 30-49. DOI: https://doi.org/10.1016/j.resconrec.2018.02.005
BICO Braun International, Manufacturers of mining and geological laboratory test equipment. [www.bicoinc.com].
ASTM (2010). Standard test methods for specific gravity of soil solids by water pycnometer D854.
ASTM (2012). Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate C127.
ASTM (2010). Standard test methods for liquid limit, plastic limit, and plasticity index of soils D4318.
ASTM (2009). Standard test methods for particle-size distribution (gradation) of soils using sieve analysis D6913.
ASTM (2010). Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine C131
INVIAS (2013). Capítulo 3-Afirmados, Subbases y Bases Art. 300 Disposiciones generales para la ejecución de afirmados, sub-bases y bases granulares y estabilizadas
Kurda R, de Brito J, Silvestre JD. (2017) Influence of recycled aggregates and high contents of fly ash on concrete fresh properties. Cement and Concrete Composites, 84: 198-213. DOI: https://doi.org/10.1016/j.cemconcomp.2017.09.009
Pickel D, Tighe S, West JS. (2017) Assessing benefits of pre-soaked recycled concrete aggregate on variably cured concrete. Construction and Building Materials, 141: 245-252. DOI: https://doi.org/10.1016/j.conbuildmat.2017.02.140
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.