PLC-based PID controller for real-time pH neutralization process using Palm Oil Mill Effluent
DOI:
https://doi.org/10.31436/iiumej.v24i1.2366Keywords:
OPC DA server, PLC, PID controller, pH neutralization, POMEAbstract
The pH neutralization process is a highly non-linear process and time delay system that is difficult to control and to accurately model mathematically. Therefore, the empirical method, which needs reliable experimental data to represent the process dynamics, is often used. In this paper, the performance of the PLC-based PID controller was studied using a different adjustment of the acid dosing pump stroke rate in the pH neutralization process. The pH neutralization process is a single-input, single-output system where the manipulated variable is the alkali dosing pump stroke rate, the controlled variable is pH, and the acid dosing pump stroke rate is set as a constant. The acid dosing pump stroke rate was adjusted to 10%, 15% and 25%. The results showed that the best performance of the PID controller was based on setpoint tracking when the setting of the acid dosing pump stroke rate was set at 10%, which could be used as experimental data in the empirical method. In addition, the real-time control system was integrated between PLC and MATLAB using National Instruments OPC server to access the experimental data in real-time, conduct simulation, and to develop the advanced control in the future.
ABSTRAK: Peneutralan pH adalah proses tidak linear yang sukar dikawal dan sukar mendapat model matematik yang tepat. Oleh itu, kaedah empirikal memerlukan data eksperimen masa nyata bagi mewakili proses dinamik untuk mengatasi masalah ini. Kajian ini adalah berkaitan kajian prestasi pengawal PLC-berdasarkan PID menggunakan pelbagai perubahan kadar strok pam dos asid dalam proses peneutralan pH. Proses peneutralan pH ini adalah sistem satu input/output, di mana pemboleh ubah yang dimanipulasi adalah kadar peratusan strok pam dos alkali menggunakan pam peristaltik, pemboleh ubah kawalan ialah pH dan pemboleh ubah malar ialah peratusan dos asid.Kadar strok pam dos asid dilaraskan pada 10%, 15% dan 25%. Dapatan kajian menunjukkan prestasi terbaik kawalan PID adalah berdasarkan pengesan titik-set apabila kadar strok pam dos asid dilaraskan pada 10%, di mana ianya berkesan apabila digunakan sebagai data eksperimen dalam kaedah empirikal. Tambahan, kajian ini telah berjaya membentuk sistem kawalan masa nyata bagi proses penutralan pH menggunakan PLC dan MATLAB melalui pelayan National Instruments OPC bagi membolehkan pertukaran data eksperimen secara masa nyata yang cekap, menjalankan simulasi dan pembangunan kawalan termaju pada masa hadapan.
Downloads
Metrics
References
Lee YS, Chin SY, Lim JW, Witoon T, Cheng CK. (2019). Treatment technologies of palm oil mill effluent (POME) and olive mill wastewater (OMW): A brief review. Environmental Technology & Innovation, 15: 100377. doi:10.1016/j.eti.2019.100377 DOI: https://doi.org/10.1016/j.eti.2019.100377
Iskandar MJ, Baharum A, Anuar FH, Othaman R. (2018). Palm oil industry in South East Asia and the effluent treatment technology - A review. Environmental Technology & Innovation, 9:169-185. doi:10.1016/j.eti.2017.11.003 DOI: https://doi.org/10.1016/j.eti.2017.11.003
Bala JD, Lalung J, Ismail N. (2014). Palm Oil Mill Effluent (POME) Treatment “Microbial Communities in an anaerobic Digester“: A Review. International Journal of Scientific and Research Publications, 4: 1-24.
Hosseini SE, Abdul Wahid M. (2015). Pollutant in palm oil production process. Journal of the Air & Waste Management Association, 65: 773-78. doi:10.1080/10962247.2013.873092 DOI: https://doi.org/10.1080/10962247.2013.873092
Poh PE, Chong MF. (2009). Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment. Bioresource Technology, 100: 1-9.
doi:10.1016/j.biortech.2008.06.022 DOI: https://doi.org/10.1016/j.biortech.2008.06.022
Choong YY, Chou KW, Norli I. (2018). Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: A critical review. Renewable and Sustainable Energy Reviews, 82: 2993-3006. doi:10.1016/j.rser.2017.10.036 DOI: https://doi.org/10.1016/j.rser.2017.10.036
Department of Environment, Ministry of Natural Resources and Environment (October 2010) Environmental Requirements: A Guide for Investors. 11th edition, 57-59. Retrieved from https://enviro2.doe.gov.my/ekmc/wp-content/uploads/2016/08/1403056822-A%20Guide%20For%20Investors%20-%202010.pdf
Hermansson AW, Syafiie S. (2015). Model predictive control of pH neutralization process: A review. Control Engineering Practice, 45: 98-109. doi:10.1016/j.conengprac.2015.09.005 DOI: https://doi.org/10.1016/j.conengprac.2015.09.005
Zainal A, Wahab N, Yusof MI, Aliff M. (2020). pH Neutralization Plant Optimization Using Artificial Neural Network. Journal of Advanced Research in Dynamical and Control Systems, 12(SP4): 1466-1472. doi:10.5373/JARDCS/V12SP4/20201625 DOI: https://doi.org/10.5373/JARDCS/V12SP4/20201625
Fadzlu-llah A, Yusof MI, Zainal A, Azhar A, Karim AH, Aliff M, Safie SI. (2020). Design and Simulation of PID Controller for pH Neutralization Process. International Journal of Innovative Technology and Exploring Engineering, 9(3): 2740-2743.
doi:10.35940/ijitee.C9236.019320 DOI: https://doi.org/10.35940/ijitee.C9236.019320
Siemens, SIMATIC S7-1200, S7-1500 PID control function manual (2022). 69-86. Retrieved from https://support.industry.siemens.com/cs/document/108210036/simatic-s7-1200-s7-1500-pid-control?dti=0&lc=en-KR on 6 Nov 2022
Gonzalez I, Calderon A, Barragan A, Andujar J. (2017). Integration of Sensors, Controllers and Instruments Using a Novel OPC Architecture. Sensors, 17(7): 1512.
doi:10.3390/s17071512 DOI: https://doi.org/10.3390/s17071512
Mahmoodi S, Poshtan J, Jahed-Motlagh MR, Montazeri A. (2009). Nonlinear model predictive control of a pH neutralization process based on Wiener-Laguerre model. Chemical Engineering Journal, 146(3):328-337. doi:10.1016/j.cej.2008.06.010 DOI: https://doi.org/10.1016/j.cej.2008.06.010
Stoop F, Ely G, Menna R, Charache G, Gittler T, Wegener K (2019). Smart factory equipment integration through standardized OPC UA communication with companion specifications and equipment specific information models. International Journal of Mechatronics and Manufacturing Systems, 12(3/4): 344-364. DOI: https://doi.org/10.1504/IJMMS.2019.103499
doi: 10.1504/ijmms.2019.10025077 DOI: https://doi.org/10.1504/IJMMS.2019.10025077
Bagal KN, Kadu CB, Parvat BJ, Vikhe PS. (2018). PLC Based Real Time Process Control Using SCADA and MATLAB. In IEEE Fourth International Conference on Computing Communication Control and Automation (ICCUBEA): August 2018; Pune, India. pp 1-5 DOI: https://doi.org/10.1109/ICCUBEA.2018.8697491
Gajjar AG, Patel AI, Singh RG. (2017). Real time implementation of MPC in bottle washer machine for small scale beverage industry. In IEEE 6th International Conference on Computer Applications in Electrical Engineering Recent Advances (CERA): October 2017; Roorkee, India. pp 509-514 DOI: https://doi.org/10.1109/CERA.2017.8343382
Bhaskawar T, Chile R, Aole S, Elamvazuthi I. (2019). Remote Monitoring of Coupled Tank Accompanied by PLC-OPC-MATLAB Architecture, In IEEE Student Conference on Research and Development (SCOReD): October 2019; Perak, Malaysia. Pp 328-332 DOI: https://doi.org/10.1109/SCORED.2019.8896267
Ahmad B, Prajitno P. (2020). Design of neural network and PLC-based water flow controller, Journal of Physics: Conference Series, 1528 012065. DOI: https://doi.org/10.1088/1742-6596/1528/1/012065
Zainal NH, Jalani NF, Mamat R, Astimar AA. (2017). A review on the development of palm oil mill effluent (POME) final discharge polishing treatments, Journal of Oil Palm Research, 29(4): 528-540. doi:10.21894/jopr.2017.00012 DOI: https://doi.org/10.21894/jopr.2017.00012
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Funding data
-
Universiti Teknologi Malaysia
Grant numbers Q.J130000.2451.08G74 -
Universiti Kuala Lumpur
Grant numbers UniKL/CoRI/str18040