Characteristics of Leachate Upon Hydrothermal Treatment Processing: Case Study of Ampang District Municipal Solid Waste Leachate

Authors

DOI:

https://doi.org/10.31436/iiumej.v23i2.2196

Keywords:

municipal solid waste, leachate, hydrothermal, organic compound

Abstract

Municipal solid waste (MSW) leachate is a hazardous liquid produced from decomposition of solid waste with high amount of organic matter and ammonia-nitrogen with obnoxious smell. This study aimed to investigate the behavior of MSW leachate when subjected to hydrothermal treatment using an autoclave set up at below water critical points (temperatures of 100 °C, 150 °C, and 200 °C at 0.1 MPa, 0.4 MPa and 1.6 MPa, respectively) with 15 min and 60 min holding time. Physicochemical characterization of the setup at 200 °C and 1.6 MPa at 60 min holding time indicates a feasible parameter when materials that caused the dark color and obnoxious smell were almost completely removed. Over 99% of chemical oxygen demand and ammonia nitrogen was eliminated when treated with hydrothermal treatment and yielded a condensed liquid product that complied with permissible limits set by the National Water Quality Standard Malaysia and the World Health Organization for wastewater discharges for irrigation purposes. Chromatographic analysis indicated that most of the organic compounds present in the raw leachate was removed. This processing is believed to be an environmentally friendly method that can treat MSW leachate rapidly, and it has the potential to be used as an effective alternative to existing leachate treatment technologies.

ABSTRAK Larut lesap daripada sisa pepejal perbandaran merupakan cecair merbahaya yang berlaku semasa penguraian sisa pepejal dengan jumlah bahan organik dan ammonia-nitrogen yang tinggi dengan bau menjengkelkan. Kajian ini bertujuan bagi mengkaji sifat larut lesap ini apabila melalui rawatan hidroterma menggunakan autoklaf yang ditetapkan di bawah titik kritikal air (suhu 100 °C, 150 °C, dan 200 °C pada 0.1 MPa, 0.4 MPa dan 1.6 MPa masing-masing) dengan tempoh masa 15 minit dan 60 minit. Sifat fizikal kimia yang dirawat pada suhu 200 °C, 1.6 MPa selama 60 minit menunjukkan satu parameter yang boleh dilaksanakan apabila warna gelap dan bau yang menjengkelkan hampir dikurangkan sepenuhnya. Lebih 99% ammonia nitrogen disingkirkan apabila dirawat dengan rawatan hidrotherma dan menghasilkan air bersih yang mematuhi had yang dibenarkan oleh Piawaian Kualiti Air Kebangsaan Malaysia (NWQSM) dan Pertubuhan Kesihatan Sedunia (WHO) bagi pelupusan air sisa pepejal bagi tujuan pengairan. Analisis kromatografi menunjukkan bahawa sebahagian besar sebatian organik yang terdapat dalam larut resap telah disingkirkan. Pemprosesan ini diyakini merupakan kaedah mesra alam yang dapat merawat dengan cepat, dan berpotensi digunakan sebagai alternatif efektif untuk teknologi rawatan larut lesap sedia ada.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ramírez-Sosa DR, Castillo-Borges ER, Méndez-Novelo RI, Sauri-Riancho MR, Barceló-Quintal M, Marrufo-Gómez JM. (2013) Determination of organic compounds in landfill leachates treated by Fenton–Adsorption. Waste Management, 33(2): 390-395. https://doi.org/10.1016/j.wasman.2012.07.019 DOI: https://doi.org/10.1016/j.wasman.2012.07.019

Peter AE, Nagendra SS, Nambi IM. (2019) Environmental burden by an open dumpsite in urban India. Waste management, 85, 151-163. https://doi.org/10.1016/j.wasman.2018.12.022 DOI: https://doi.org/10.1016/j.wasman.2018.12.022

Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A. (2001) Albrechtsen H.-J. r.; Heron G. Biogeochemistry of landfill leachate plumes. Appl. Geochem, 16, 659-718. https://doi.org/10.1016/S0883-2927(00)00082-2 DOI: https://doi.org/10.1016/S0883-2927(00)00082-2

Manaf LA, Samah MAA, Zukki NIM. (2009) Municipal solid waste management in Malaysia: Practices and challenges. Waste Manag 29: 2902-2906. https://doi.org/10.1016/j.wasman.2008.07.015 DOI: https://doi.org/10.1016/j.wasman.2008.07.015

Abas MA, Wee ST. (2014) The Issues of Policy Implementation on Solid Waste Management in Malaysia. Int J Conceptions Manag Soc Sci 2(3): 12-17.

Mahidin DSDMU. (2020) Department of Statistics Malaysia Press Release: Compendium of Environment Statistics, Malaysia 2020. Dep Stat Malaysia 2015(2)

Li W, Zhou Q, Hua T. (2010) Removal of organic matter from landfill leachate by advanced oxidation processes: A review. International Journal of Chemical Engineering. https://doi.org/10.1155/2010/270532 DOI: https://doi.org/10.1155/2010/270532

Nascimento Filho ID, von Mühlen C, Caramão EB. (2001) China DDP Despachante de Frete Marítimo taxas transporte da para Saba/em todo o mundo. Química Nova, 24(4): 554-556. https://doi.org/10.1590/S0100-40422001000400017 DOI: https://doi.org/10.1590/S0100-40422001000400017

Hamar GB, Mcgeehin MA, Phifer BL, Ashley DL. (1996) Volatile organic compound testing of a population living near a hazardous waste site. Journal of Expo Anal Environ Epidemiol 6(2): 247-255.

Reif JS, Tsongas TA, Anger WK, Mitchell J, Metzger L, Keefe TJ, Tessari JD, Amler R. (1993) Two-stage evaluation of exposure to mercury and biomarkers of neurotoxicity at a hazardous waste site. Journal of Toxicol Environmental Health, 40(2-3): 413-422. https://doi.org/10.1080/15287399309531808 DOI: https://doi.org/10.1080/15287399309531808

Stehr-Green PA, Burse VW, Welty E. (1988) Human exposure to polychlorinated biphenyls at toxic waste sites: Investigations in the United States. Arch Environ Health 43(6): 420-424. https://doi.org/10.1080/00039896.1988.9935861 DOI: https://doi.org/10.1080/00039896.1988.9935861

Moraes PB, Bertazzoli R. (2005) Electrodegradation of landfill leachate in a flow electrochemical reactor. Chemosphere, 58(1): 41-46. https://doi.org/10.1016/j.chemosphere.2004.09.026 DOI: https://doi.org/10.1016/j.chemosphere.2004.09.026

Griffith J, Duncan RC, Pellom AC. (1989) Cancer mortality in U.S. Counties with hazardous waste sites and ground water pollution. Arch Environmental Health, 44(2): 69-74. https://doi.org/10.1080/00039896.1989.9934378 DOI: https://doi.org/10.1080/00039896.1989.9934378

Sang YM, Gu QB, Sun TC, Li FS. (2008) Color and organic compounds removal from secondary effluent of landfill leachate with a novel inorganic polymer coagulant. Water Science and Technology, 58(7): 1423-1432. https://doi.org/10.2166/wst.2008.446 DOI: https://doi.org/10.2166/wst.2008.446

Marttinen SK, Kettunen RH, Rintala JA. (2003) Occurrence and removal of organic pollutants in sewages and landfill leachates. Science of the total environment, 301(1-3): 1-12. https://doi.org/10.1016/S0048-9697(02)00302-9 DOI: https://doi.org/10.1016/S0048-9697(02)00302-9

Monje-Ramirez I, De Velasquez MO. (2004) Removal and transformation of recalcitrant organic matter from stabilized saline landfill leachates by coagulation–ozonation coupling processes. Water Research, 38(9): 2359-2367. https://doi.org/10.1016/j.watres.2004.02.011 DOI: https://doi.org/10.1016/j.watres.2004.02.011

Park JY, Batchelor B. (2002) A multi-component numerical leach model coupled with a general chemical speciation code. Water research, 36(1): 156-166. https://doi.org/10.1016/S0043-1354(01)00207-X DOI: https://doi.org/10.1016/S0043-1354(01)00207-X

Gajski G, Oreš?anin V, Garaj-Vrhovac V. (2012) Chemical composition and genotoxicity assessment of sanitary landfill leachate from Rovinj, Croatia. Ecotoxicology and Environmental Safety, 78: 253-259. https://doi.org/10.1016/j.ecoenv.2011.11.032 DOI: https://doi.org/10.1016/j.ecoenv.2011.11.032

Mukherjee S, Mukhopadhyay S, Hashim MA, Sen Gupta B (2015) Contemporary environmental issues of landfill leachate: assessment and remedies. Critical Reviews in Environmental Science and Technology, 45(5): 472-590. https://doi.org/10.1080/10643389.2013.876524 DOI: https://doi.org/10.1080/10643389.2013.876524

Hemananthani S. (2017) Minister: Leachate contamination must be addressed. The Star. https://www.thestar.com.my/news/nation/2017/07/10/a-very-dirty-dirty-headache-minister-leachate-contamination-must-be-addressed/

Hoang VY, Jupsin H, Le VC, Vasel JL. (2012) Modeling of partial nitrification and denitrification in an SBR for leachate treatment without carbon addition. Journal of Material Cycles and Waste Management, 14(1): 3-13. https://doi.org/10.1007/s10163-011-0033-x DOI: https://doi.org/10.1007/s10163-011-0033-x

Show PL, Pal P, Leong HY, Juan JC, Ling TC. (2019) A review on the advanced leachate treatment technologies and their performance comparison: an opportunity to keep the environment safe. Environmental monitoring and assessment, 191(4): 1-28. https://doi.org/10.1007/s10661-019-7380-9 DOI: https://doi.org/10.1007/s10661-019-7380-9

Wang K, Li L, Tan F, Wu D. (2018) Treatment of landfill leachate using activated sludge technology: A review. Archaea, 2018: 1-10. Article ID 1039453. https://doi.org/10.1155/2018/1039453 DOI: https://doi.org/10.1155/2018/1039453

Du X, Zhang R, Gan Z, Bi J. (2013) Treatment of high strength coking wastewater by supercritical water oxidation. Fuel, 104: 77-82. https://doi.org/10.1016/j.fuel.2010.09.018 DOI: https://doi.org/10.1016/j.fuel.2010.09.018

Reddy SN, Nanda S, Hegde UG, Hicks MC, Kozinski JA. (2015) Ignition of hydrothermal flames. RSC Advances, 5(46): 36404-36422. https://doi.org/10.1039/c5ra02705e DOI: https://doi.org/10.1039/C5RA02705E

Hwang I-H, Aoyama H, Matsuto T, Nakagishi T, Matsuo T. (2012) Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water. Waste Management, 32(3): 410-416. https://doi.org/10.1016/j.wasman.2011.10.006 DOI: https://doi.org/10.1016/j.wasman.2011.10.006

Kang K, Quitain AT, Daimon H, Noda R, Goto N, Hu HY, Fujie K. (2001) Optimization of amino acids production from waste fish entrails by hydrolysis in sub and supercritical water. The Canadian Journal of Chemical Engineering, 79(1): 65-70. https://doi.org/10.1002/cjce.5450790110 DOI: https://doi.org/10.1002/cjce.5450790110

Brunner G. (2009) Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. The Journal of Supercritical Fluids, 47(3): 373-381. DOI: https://doi.org/10.1016/j.supflu.2008.09.002

Ren LH, Nie YF, Liu JG, Jin YY, Sun L. (2006) Kinetics study on photochemical oxidation of polyacrylamide by ozone combined with hydrogen peroxide and ultraviolet radiation. Journal of Environmental Sciences, 18(4): 660-664.

Watchararuji K, Goto M, Sasaki M, Shotipruk A. (2008) Value-added subcritical water hydrolysate from rice bran and soybean meal. Bioresource technology, 99(14): 6207-6213. https://doi.org/10.1016/j.biortech.2007.12.021 DOI: https://doi.org/10.1016/j.biortech.2007.12.021

Lamoolphak W, De-Eknamkul W, Shotipruk A. (2008) H production and characterization of protein and amino acids from silk waste. Bioresource Technology, 99(16): 7678-7685. https://doi.org/10.1016/j.biortech.2008.01.072 DOI: https://doi.org/10.1016/j.biortech.2008.01.072

Eley MH, Guinn GR, Bagchi J. (1995) Cellulosic materials recovered from steam classified municipal solid wastes as feedstocks for conversion to fuels and chemicals. Applied Biochemistry and Biotechnology, 51(1): 387-397. https://doi.org/10.1007/BF02933442 DOI: https://doi.org/10.1007/BF02933442

Sawayama S, Inoue S, Minowa T, Tsukahara K, Ogi T. (1997) Thermochemical liquidization and anaerobic treatment of kitchen garbage. Journal of fermentation and bioengineering, 83(5): 451-455. https://doi.org/10.1016/S0922-338X(97)82999-6 DOI: https://doi.org/10.1016/S0922-338X(97)82999-6

Kato A, Matsumura Y. (2003) Hydrothermal Pulping of Wet Biomass as Pretreatment for Supercritical Water Gasification Studies Using Cabbage as a Model Compound. Journal of the Japan Institute of Energy, 82: 97-102. https://doi.org/10.3775/jie.82.97 DOI: https://doi.org/10.3775/jie.82.97

Papadimitriou EK, Barton JR, Stentiford EI. (2008) Sources and levels of potentially toxic elements in the biodegradable fraction of autoclaved non-segregated household waste and its compost/digestate. Waste Management & Research, 26(5): 419-430. https://doi.org/10.1177/0734242X08088697 DOI: https://doi.org/10.1177/0734242X08088697

Onwudili JA, Williams PT. (2007) Hydrothermal catalytic gasification of municipal solid waste. Energy and Fuels, 21: 3676-3683. https://doi.org/10.1021/ef700348n DOI: https://doi.org/10.1021/ef700348n

Marrone PA, Hong GT. (2007) Supercritical water oxidation. Environmentally Conscious Materials and Chemicals Processing, 385-453. https://doi.org/10.1002/9780470168219.ch13 DOI: https://doi.org/10.1002/9780470168219.ch13

Gidner A, Stenmark L. (2001) Supercritical water oxidation of sewage sludge–State of the art. In Proceedings of the IBC’s Conference on Sewage Sludge and Disposal Options: 26-27 March 2001; Birmingham, England; 1-16. Elsevier Karlskoga.

Cocero MJ, Martín A, Bermejo MD, Santos M, Rincón D, Alonso E, Fdez-Polanco F. (2003) Supercritical water oxidation of industrial waste from pilot to demonstration scale. In Proceedings of the 6th International Symposium on Supercritical Fluids: 28-30 April 2003; Versailles, France.

Behnia I. (2013) Treatment of aqueous biomass and waste via supercritical water gasification for the production of CH4 and H2. Master thesis. The University of Western Ontario, Chemical and Biochemical Engineering Department. DOI: https://doi.org/10.1007/978-94-017-8923-3_12

Veriansyah B, Kim JD. (2007) Supercritical water oxidation for the destruction of toxic organic wastewaters: A review. Journal of Environmental Sciences, 19(5): 513-522. https://doi.org/10.1016/S1001-0742(07)60086-2 DOI: https://doi.org/10.1016/S1001-0742(07)60086-2

Kirmizakis P, Tsamoutsoglou C, Kayan B, Kalderis D. (2014) Subcritical water treatment of landfill leachate: Application of response surface methodology. Journal of Environmental Management, 146: 9-15. https://doi.org/10.1016/j.jenvman.2014.04.037 DOI: https://doi.org/10.1016/j.jenvman.2014.04.037

APHA (2005) Standard Methods for the Examination of Water and Wastewater. Stand Methods. https://doi.org/ISBN 9780875532356

Turki N. (2013) Determination of organic compounds in landfill leachates treated by coagulation-flocculation and Fenton-adsorption. Journal of Environmental Science Toxicology Food Technology, 7(3): 18-25. https://doi.org/10.9790/2402-0731825 DOI: https://doi.org/10.9790/2402-0731825

Baan R, Gross Y, Straif K. (2009) A review of human carcinogens-Part F: chemical agents and related occumations. The Lancet Oncology, 10(12): 1143-1144. DOI: https://doi.org/10.1016/S1470-2045(09)70358-4

McCallister MM, Maguire M, Ramesh A, Aimin Q, Liu S, Khoshbouei H, Aschner M, Ebner FF, Hood DB. (2008) Prenatal exposure to benzo(a)pyrene impairs later-life cortical neuronal function. Neurotoxicology, 29(5): 846-854. DOI: https://doi.org/10.1016/j.neuro.2008.07.008

Clark RS, Pellom ST, Booler B, Ramesh A, Zhang T, Shanker A, Maguire M, Juarez PD, Patricia MJ, Langston MA, Lichtveld MY, Hood DB. (2006) Validation of research trajectory 1 of an Exposome framework: Exposure to benzo(a)pyrene confers enhanced susceptibility to bacterial infection. Environmental Research, 146: 173-184. DOI: https://doi.org/10.1016/j.envres.2015.12.027

Ramesh A, Inyang F, Lunstra DD, Niaz MS, Kopsombut P, Jones KM, Hood DB, Hills ER, Archibong AE. (2008) Alteration of fertility endpoints in adult male F-344 rats by subchronic exposure to inhaled benzo(a)pyrene. Experimental and Toxicologic Pathology, 60(4-5): 269-280. DOI: https://doi.org/10.1016/j.etp.2008.02.010

Vane CH, Kim AW, Beriro DJ, Cave MR, Knights K, Moss-Hayes V, Nathanail PC. (2014) Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK. Applied Geochemistry, 51: 303-314. https://doi.org/10.1016/j.apgeochem.2014.09.013 DOI: https://doi.org/10.1016/j.apgeochem.2014.09.013

Downloads

Published

2022-07-04

How to Cite

Hadi Purwanto, Khamis, S. S., Mohd Salleh, H. ., Rozhan, A. N., Abd. Rahman, M., & Othman, R. . (2022). Characteristics of Leachate Upon Hydrothermal Treatment Processing: Case Study of Ampang District Municipal Solid Waste Leachate. IIUM Engineering Journal, 23(2), 205–217. https://doi.org/10.31436/iiumej.v23i2.2196

Issue

Section

Materials and Manufacturing Engineering