Mechanical and Thermal Conductive Properties of Natural And Synthetic Cellulose Reinforced Epoxy Composites
DOI:
https://doi.org/10.31436/iiumej.v23i2.2182Keywords:
Epoxy resin, Sawdust, Mechanical properties, Thermal conductivity, CelluloseAbstract
Natural and synthetic cellulose-based composites have been used widely as they have many advantages, the most significant of which are lightweight, durable, strong, flexible, and resistant to corrosion. Although several studies have reviewed the characteristics of these composites, only limited research has investigated combining both natural and synthetic cellulose together. In this study, the thermal and mechanical properties of epoxy resin reinforced with different additives (sawdust and industrial cellulose) will be explored. To do this, four samples of different materials were prepared at room temperature. The first sample consisted of 100% epoxy, whilst the next sample contained 95 wt.% epoxy and 5 wt.% industrial cellulose. The third sample contained 95 wt.% epoxy and 5 wt.% natural cellulose (sawdust), and the final sample contained 95 wt.% epoxy, 2.5 wt.% natural cellulose and 2.5 wt.% industrial cellulose. The findings indicated that mechanical properties and thermal insulation can be enhanced by adding natural cellulose to the mixture. Compared to the pristine epoxy, the improvement ratios for mechanical properties were as follows: tensile strength 25%, impact strength 16.6%, and hardness 6.9%, while the results were negative for bending resistance (3.9% less). In terms of thermal properties, the sawdust/epoxy composite showed better insulation (29% higher) than neat epoxy resin. These promising findings suggest the proposed composite can be a good alternative in numerous applications such as automotive parts and building construction that require superior mechanical characteristics and thermal insulation.
ABSTRAK: Komposit semula jadi dan sintetik berasaskan selulosa telah banyak digunakan secara meluas kerana ia mempunyai banyak faedah, dan yang paling penting ianya ringan, tahan lama, kuat, fleksibel dan tahan hakisan. Walaupun terdapat banyak kajian telah dilakukan pada ciri-ciri yang terdapat pada bahan komposit ini, terdapat kurang kajian dilakukan ke atas gabungan Bersama kedua-dua bahan semua jadi dan sintetik selulosa. Kajian ini adalah tentang suhu dan ciri-ciri mekanikal damar epoksi yang diperkukuhkan dengan pelbagai bahan tambahan seperti serbuk gergaji dan selulosa industri. Bagi menghasilkan bahan kajian ini, empat sampel dari bahan berbeza disediakan pada suhu bilik. Sampel pertama terdiri daripada epoksi 100%, sementara sampel berikutnya mengandungi epoksi 95 wt.% dan selulosa industri sebanyak 5 wt.%. Sampel ketiga mengandungi epoksi 95 wt.% dan 5 wt.% selulosa semula jadi (dari serbuk gergaji), dan sampel terakhir mengandungi epoksi 95 wt.%, dan selulosa semula jadi 2.5 wt.% dan selulosa industri 2.5 wt.%. Dapatan kajian menunjukkan ciri-ciri mekanikal dan penebat suhu boleh dipertingkatkan dengan menambah selulosa semula jadi dalam campuran. Jika dibandingkan dengan epoksi asal, nisbah penambah baikan bagi ciri-ciri mekanikal adalah seperti berikut: kekuatan tegangan 25%, kekuatan hentaman 16.6% dan kekerasan adalah sebanyak 6.9%, sementara dapatan kajian adalah negatif bagi rintangan ketika membengkok (iaitu berkurang sebanyak 3.9%). Dari segi ciri-ciri haba, komposit serbuk gergaji/epoksi menunjukkan sebagai penebat yang baik (meningkat 29%) berbanding damar epoksi bersih. Penemuan yang bagus ini menunjukkan, komposit yang di cadangkan ini dapat menjadi alternatif terbaik dalam pelbagai kegunaan seperti bahagian-bahagian automotif dan pembinaan bangunan yang memerlukan peningkatan ciri-ciri mekanikal dan penebat haba.
Downloads
Metrics
References
Hanon MM, Marczis R, Zsidai L. (2020) Impact of 3D-printing structure on the tribological properties of polymers. Ind Lubr Tribol, 72(6): 811-818. https://doi.org/10.1108/ILT-05-2019-0189 DOI: https://doi.org/10.1108/ILT-05-2019-0189
Abdellaoui H, Bensalah H, Echaabi J, Bouhfid R, Qaiss A. (2015) Fabrication, characterization and modelling of laminated composites based on woven jute fibres reinforced epoxy resin. Mater Des, 68: 104-113. https://doi.org/10.1016/j.matdes.2014.11.059 DOI: https://doi.org/10.1016/j.matdes.2014.11.059
Bello SA, Agunsoye JO, Hassan SB, Kana MGZ, Raheem IA. (2015) Epoxy resin based composites, mechanical and tribological properties: A review. Tribol Ind, 37(4): 500-524.
Paluvai NR, Mohanty S, Nayak SK. (2014) Synthesis and modifications of epoxy resins and their composites: a review. Polym Plast Technol Eng, 53(16): 1723-1758. https://doi.org/10.1080/03602559.2014.919658 DOI: https://doi.org/10.1080/03602559.2014.919658
Verma D, Gope PC, Shandilya A, Gupta A, Maheshwari MK. (2013) Coir fibre reinforcement and application in polymer composites: A review. J Mater Environ Sci, 4(2): 263-276.
Bismarck A, Baltazar-Y-Jimenez A, Sarikakis K. (2006) Green composites as Panacea? Socio-economic aspects of green materials. Environ Dev Sustain, 8(3): 445-463. https://doi.org/10.1007/s10668-005-8506-5 DOI: https://doi.org/10.1007/s10668-005-8506-5
Müller K, Bugnicourt E, Latorre M, Jorda M, Sanz YE, Lagaron JM, Miesbauer O, Bianchin A, Hankin S, Bölz U, Pérez G, Jesdinszki M, Lindner M, Scheuerer Z, Castelló S, Schmid M. (2017) Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials, 7(4): 74. https://doi.org/10.3390/nano7040074 DOI: https://doi.org/10.3390/nano7040074
Akter T. (2006) Manufacturing of biocomposite shell mimetic via the powder compaction method.
Khoee S, Hassani N. (2010) Adhesion strength improvement of epoxy resin reinforced with nanoelastomeric copolymer. Mater Sci Eng A, 527(24-25): 6562-6567. https://doi.org/10.1016/j.msea.2010.07.013 DOI: https://doi.org/10.1016/j.msea.2010.07.013
Qi S, Li C, Huang Y. (2006) Preparation of SIC hybrid phenolic resin composites. In: AIAA 57th Int. Astronaut. Congr. IAC 2006. pp 5237-5240
Hanon MM, Alshammas Y, Zsidai L. (2020) Effect of print orientation and bronze existence on tribological and mechanical properties of 3D-printed bronze/PLA composite. Int J Adv Manuf Technol, 108(1-2): 553-570. https://doi.org/10.1007/s00170-020-05391-x DOI: https://doi.org/10.1007/s00170-020-05391-x
Mahan HM, Mahjoob D, Mahmood KI. (2018) Mechanical properties of alumina nano-particles and glass fiber, Kevlar fiber reinforced composites. J Eng Appl Sci, 13(21): 9096-9100. https://doi.org/10.3923/jeasci.2018.9096.9100
Ismail M, Rejab MRM, Siregar JP, Mohamad Z, Quanjin M, Mohammed AA. (2020) Mechanical properties of hybrid glass fiber/rice husk reinforced polymer composite. Mater Today Proc, 27: 1749-1755. https://doi.org/10.1016/j.matpr.2020.03.660 DOI: https://doi.org/10.1016/j.matpr.2020.03.660
Ismail M, Rejab MRM, Siregar JP, Muhamad Z, Quanjin M. (2020) Tensile properties of hybrid woven glass fibre/PALF reinforced polymer composite. In: Proc. 4th Int. Manuf. Eng. Conf. 5th Asia Pacific Conf. Manuf. Syst. (iMEC-APCOMS 2019). Springer-Singapore, Putrajaya, Malaysia, pp 448-454 DOI: https://doi.org/10.1007/978-981-15-0950-6_68
Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B. (2016) Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog Polym Sci, 59: 41-85. https://doi.org/10.1016/j.progpolymsci.2016.03.001 DOI: https://doi.org/10.1016/j.progpolymsci.2016.03.001
Abdul-Hussein AB. (2019) Effect of industrial powder on mechanical properties of glass fiber reinforced epoxy composite. Iraqi J Phys, 12(25): 8-24. https://doi.org/10.30723/ijp.v12i25.300 DOI: https://doi.org/10.30723/ijp.v12i25.300
Kumar SS. (2020) Effect of natural fiber loading on mechanical properties and thermal characteristics of hybrid polyester composites for industrial and construction fields. Fibers Polym, 21(7): 1508-1514. https://doi.org/10.1007/s12221-020-9853-4 DOI: https://doi.org/10.1007/s12221-020-9853-4
Girijappa YGT, Rangappa SM, Parameswaranpillai J, Siengchin S. (2019) Natural fibers as sustainable and renewable resource for development of eco-friendly composites: A comprehensive review. Front Mater, 6: 226. https://doi.org/10.3389/fmats.2019.00226 DOI: https://doi.org/10.3389/fmats.2019.00226
Xiao M, Feng B, Gong K. (2002) Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity. Energy Convers Manag, 43(1): 103-108. https://doi.org/10.1016/S0196-8904(01)00010-3 DOI: https://doi.org/10.1016/S0196-8904(01)00010-3
Chandramohan D, Marimuthu. (2011) A review on natural fibers. Int J Res Rev Appl Sci, 8(2): 194-206.
Chand N, Fahim M. (2008) Tribology of natural fiber polymer composites. Cambridge, England, Woodhead Publishing Ltd, Elsevier. https://doi: 10.1533/9781845695057 DOI: https://doi.org/10.1201/9781439832592
Hameed IS, Mahan HM, Hameed AS. (2020) Microwave power absorption evaluation of river shell particles reinforced polyester composite. Period Polytech Electr Eng Comput Sci, 64(2): 192-199. https://doi.org/10.3311/PPEE.14263 DOI: https://doi.org/10.3311/PPee.14263
Mohan N, Senthil P, Vinodh S, Jayanth N. (2017) A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual Phys Prototyp, 12(1): 47-59. https://doi.org/10.1080/17452759.2016.1274490 DOI: https://doi.org/10.1080/17452759.2016.1274490
Swain PTR. (2013) Physical and mechanical behavior of Al2O3 filled jute fiber reinforced epoxy composites. Int J Curr Eng Technol, 2(2): 67-71. https://doi.org/10.14741/ijcet/spl.2.2014.13 DOI: https://doi.org/10.14741/ijcet/spl.2.2014.13
Deng S, Zhang J, Ye L, Wu J. (2008) Toughening epoxies with halloysite nanotubes. Polymer (Guildf), 49(23): 5119-5127. https://doi.org/10.1016/j.polymer.2008.09.027 DOI: https://doi.org/10.1016/j.polymer.2008.09.027
Waliszewska B, Mleczek M, Zborowska M, Goli?ski P, Rutkowski P, Szentner K. (2019) Changes in the chemical composition and the structure of cellulose and lignin in elm wood exposed to various forms of arsenic. Cellulose, 26(10): 6303-6315. https://doi.org/10.1007/s10570-019-02511-z DOI: https://doi.org/10.1007/s10570-019-02511-z
Tanaka T, Montanari GC, Mülhaupt R. (2004) Polymer nanocomposites as dielectrics and electrical insulation- perspectives for processing technologies, material characterization and future applications. IEEE Trans Dielectr Electr Insul, 11(5): 763-784. https://doi.org/10.1109/TDEI.2004.1349782 DOI: https://doi.org/10.1109/TDEI.2004.1349782
Shaari N, Jumahat A, Yahya KH, Sulaiman MF. (2014) Impact resistance of woven fiber reinforced polymer composites. Adv Environ Biol, 8(3): 2662-2668.
Cicala G, Cristaldi G, Recca G, Latteri A. (2010) Composites based on natural fibre fabrics. Woven Fabr Eng, 17:317–342. https://doi.org/10.5772/10465 DOI: https://doi.org/10.5772/10465
Peças P, Carvalho H, Salman H, Leite M. (2018) Natural fibre composites and their applications: A review. J Compos Sci, 2(4): 66. https://doi.org/10.3390/jcs2040066 DOI: https://doi.org/10.3390/jcs2040066
Surin VG, Mogilevskii BM, Chudnovskii AF. (1972) Effect of additives on the thermal conductivity of cyclohexane. J Eng Phys, 23(1): 904-905. https://doi.org/10.1007/BF00826269 DOI: https://doi.org/10.1007/BF00826269
Abenojar J, Tutor J, Ballesteros Y, del Real JC, Martínez MA. (2017) Erosion-wear, mechanical and thermal properties of silica filled epoxy nanocomposites. Compos Part B Eng, 120: 42-53. https://doi.org/10.1016/j.compositesb.2017.03.047 DOI: https://doi.org/10.1016/j.compositesb.2017.03.047
Yin J, Li G, He W, Huang J, Xu M. (2011) Hydrothermal decomposition of brominated epoxy resin in waste printed circuit boards. J Anal Appl Pyrolysis, 92(1): 131-136. https://doi.org/10.1016/j.jaap.2011.05.005 DOI: https://doi.org/10.1016/j.jaap.2011.05.005
Mahan HM, Farhan MM, Shaalan TG. (2019) Studying some mechanical properties of river shell particle polymer matrix composite. J Southwest Jiaotong Univ. doi: 10.35741/issn.0258-2724.54.4.17 DOI: https://doi.org/10.35741/issn.0258-2724.54.4.17
Al-Shabander BM. (2013) Investigation of flexural properties and thermal conductivity for wood dust filled epoxy. J Al-Nahrain Univ Sci, 16(3): 104-109. https://doi.org/10.22401/JNUS.16.3.14 DOI: https://doi.org/10.22401/JNUS.16.3.14
Homkhiew C, Rawangwong S, Boonchouytan W, Thongruang W, Ratanawilai T. (2018) Composites from thermoplastic natural rubber reinforced rubberwood sawdust: Effects of sawdust size and content on thermal, physical, and mechanical properties. Int J Polym Sci, 2018: 1-11. https://doi.org/10.1155/2018/7179527 DOI: https://doi.org/10.1155/2018/7179527
Hosseinizand H, Sokhansanj S, Lim CJ. (2018) Co-pelletization of microalgae chlorella vulgaris and pine sawdust to produce solid fuels. Fuel Process Technol, 177: 129-139. https://doi.org/10.1016/j.fuproc.2018.04.015 DOI: https://doi.org/10.1016/j.fuproc.2018.04.015
Kumar R, Kumar K, Sahoo P, Bhowmik S. (2014) Study of mechanical properties of wood dust reinforced epoxy composite. Procedia Mater Sci, 6: 551-556. https://doi.org/10.1016/j.mspro.2014.07.070 DOI: https://doi.org/10.1016/j.mspro.2014.07.070
Dinesh S, Kumaran P, Mohanamurugan S, Vijay R, Singaravelu DL, Vinod A, Sanjay MR, Siengchin S, Bhat KS. (2020) Influence of wood dust fillers on the mechanical, thermal, water absorption and biodegradation characteristics of jute fiber epoxy composites. J Polym Res, 27(1): 9. https://doi.org/10.1007/s10965-019-1975-2 DOI: https://doi.org/10.1007/s10965-019-1975-2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.