Characterization and Sintering Properties of Hydroxyapatite Bioceramics Synthesized From Clamshell Biowaste
DOI:
https://doi.org/10.31436/iiumej.v23i2.2143Keywords:
Hydroxyapatite, bioceramics, chemical synthesis, calcination, sinteringAbstract
Hydroxyapatite (HA) is a type of calcium phosphate-based bioactive ceramic that resembles the mineral phase of bone and teeth with great potential for bone substitution and biomedical implants. Biogenic-derived HA emerges as a cheap and eco-sustainable alternative to improve waste utilization. However, hydroxyapatite has limited applications due to its apparent brittleness, thus prompting investigation for enhanced sintering properties. In the present study, the combination of calcination and chemical precipitation technique was used to extract hydroxyapatite (HA) from ark clamshells (Anadara granosa). The method successfully produced HA powder with a Ca/P ratio of 1.6 and characteristic bands corresponded to pure HA via Fourier Transform Infrared Spectroscopy (FTIR). The synthesized HA powder was then sintered at temperatures ranging from 1200 °C to 1300 °C, followed by mechanical evaluation of the density, Vickers hardness, fracture toughness and grain size. It was revealed that the samples sintered at 1250 °C achieved a relative density of ~88%, Vickers hardness of 5.01 ± 0.39 GPa, fracture toughness of 0.88 ± 0.07 MPa.m1/2 and average grain size of ~3.7 µm. Overall, the results suggest that ark clamshell synthesized HA (ACS) had the potential to be used as functional bioceramics for biomedical applications.
ABSTRAK: Hidroksiapatit (HA) adalah sejenis seramik bioaktif berasaskan kalsium fosfat yang menyerupai fasa mineral tulang dan gigi, berpotensi besar mengantikan tulang dalam implan bioperubatan. HA yang berasal dari biogenik muncul sebagai alternatif yang murah dan eko-lestari dalam menambah baik pengurusan sisa. Walau bagaimanapun, hidroksiapatit mempunyai aplikasi yang terhad kerana mempunyai kerapuhan yang ketara, menyebabkan penyelidikan diperlukan bagi meningkatkan sifat sintering. Gabungan teknik kalsinasi dan pemendakan kimia telah digunakan dalam kajian ini, bagi mengekstrak hidroksiapatit (HA) dari kulit kerang (Anadara granosa). Kaedah ini telah berjaya menghasilkan serbuk HA dengan nisbah 1.6 Ca/P dan jalur puncak sepadan dengan HA tulen melalui Spektroskopi Inframerah Transformasi Fourier (FTIR). Serbuk HA ini kemudian disinter pada suhu antara 1200 °C hingga 1300 °C, diikuti penilaian mekanikal pada ketumpatan, kekerasan Vickers, kerapuhan dan ukuran bijirin. Hasil ujian menunjukkan bahawa sampel yang disinter pada suhu 1250 °C mencapai ~88% ketumpatan relatif, kekerasan Vickers 5.01 ± 0.39 GPa, kerapuhan pada 0.88 ± 0.07 MPa.m1/2 dan purata ukuran butiran ~ 3.7 µm. Secara keseluruhan, dapatan menunjukkan bahawa kulit kerang HA yang disentisis (ACS) berpotensi sebagai bioseramik bagi aplikasi bioperubatan.
Downloads
Metrics
References
Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, Jamshidi A. (2013) Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomaterialia, 9(8): 7591-7621. https://doi.org/10.1016/j.actbio.2013.04.012 DOI: https://doi.org/10.1016/j.actbio.2013.04.012
Hongquan Z, Yuhua Y, Youfa W, Shipu L. (2003) Morphology and formation mechanism of hydroxyapatite whiskers from moderately acid solution. Materials Research, 6: 111-115. Retrieved from https://www.scielo.br/pdf/mr/v6n1/v6n1a20.pdf DOI: https://doi.org/10.1590/S1516-14392003000100020
Hablee, S, Sopyan I, Mel, M, Salleh, H.M. and Rahman, MM. (2018) Effect of poly (ethylene glycol) on the injectability, setting behavior and mechanical properties of calcium phosphate bone cement. IIUM Engineering Journal, 19(2): 192-202. DOI: https://doi.org/10.31436/iiumej.v19i2.913
https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/913
Mo KH, Alengaram UJ, Jumaat MZ, Lee SC, Goh WI, Yuen CW. (2018) Recycling of seashell waste in concrete: A review. Construction and Building Materials, 162: 751-764. https://doi.org/10.1016/j.conbuildmat.2017.12.009 DOI: https://doi.org/10.1016/j.conbuildmat.2017.12.009
Hembrick-Holloman V, Samuel T, Mohammed Z, Jeelani S, Rangari VK. (2020) Ecofriendly production of bioactive tissue engineering scaffolds derived from egg- and sea-shells. Journal of Materials Research and Technology, 9(6): 13729-13739. https://doi.org/10.1016/j.jmrt.2020.09.093 DOI: https://doi.org/10.1016/j.jmrt.2020.09.093
Saharudin SH, Shariffuddin JH, Nordin NI. (2017) Biocomposites from Anadara granosa shells waste for bone material applications. IOP Conference Series: Materials Science and Engineering, 257: 012061. Retrieved from https://iopscience.iop.org/article/10.1088/1757-899X/257/1/012061/pdf DOI: https://doi.org/10.1088/1757-899X/257/1/012061
Musa B, Raya I, Natsir H. (2016) Synthesis and Characterizations of Hydroxyapatite Derived Blood Clam Shells (Anadara granosa) and Its Potency to Dental Remineralizations. 12(4): 527-38. Retreived from https://www.ripublication.com/ijac16/ijacv12n4_04.pdf
Bee SL, Hamid ZA. (2020) Hydroxyapatite derived from food industry bio-wastes: Syntheses, properties and its potential multifunctional applications. Ceramics International, 46(11, Part A): 17149-17175. https://doi.org/10.1016/j.ceramint.2020.04.103 DOI: https://doi.org/10.1016/j.ceramint.2020.04.103
Pu'ad NM, Koshy P, Abdullah HZ, Idris MI, Lee TC. (2019) Syntheses of hydroxyapatite from natural sources. Heliyon, 5(5): e01588. https://doi.org/10.1016/j.heliyon.2019.e01588 DOI: https://doi.org/10.1016/j.heliyon.2019.e01588
Núñez D, Elgueta E, Varaprasad K, Oyarzún P. (2018) Hydroxyapatite nanocrystals synthesized from calcium rich bio-wastes. Materials Letters, 230: 64-68. https://doi.org/10.1016/j.matlet.2018.07.077 DOI: https://doi.org/10.1016/j.matlet.2018.07.077
Vecchio KS, Zhang X, Massie JB, Wang M, Kim CW. (2007) Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants. Acta Biomaterialia, 3(6): 910-918. https://doi.org/10.1016/j.actbio.2007.06.003 DOI: https://doi.org/10.1016/j.actbio.2007.06.003
Bramhe S, Kim TN, Balakrishnan A, Chu MC. (2014) Conversion from biowaste Venerupis clam shells to hydroxyapatite nanowires. Materials Letters, 135: 195-198. https://doi.org/10.1016/j.matlet.2014.07.137 DOI: https://doi.org/10.1016/j.matlet.2014.07.137
Onoda H, Yamazaki S. (2016) Homogenous hydrothermal synthesis of calcium phosphate with calcium carbonate and corbicula shells. Journal of Asian Ceramic Societies, 4(4): 403-406. https://doi.org/10.1016/j.jascer.2016.10.001 DOI: https://doi.org/10.1016/j.jascer.2016.10.001
Alif MF, Aprillia W, Arief S. (2018) A hydrothermal synthesis of natural hydroxyapatite obtained from Corbicula moltkiana freshwater clams shell biowaste. Materials Letters, 230: 40-43. https://doi.org/10.1016/j.matlet.2018.07.034 DOI: https://doi.org/10.1016/j.matlet.2018.07.034
Pal A, Nasker P, Paul S, Chowdhury AR, Sinha A, Das M. (2019) Strontium doped hydroxyapatite from Mercenaria clam shells: Synthesis, mechanical and bioactivity study. Journal of the Mechanical Behavior of Biomedical Materials, 90: 328-336. https://doi.org/10.1016/j.jmbbm.2018.10.027 DOI: https://doi.org/10.1016/j.jmbbm.2018.10.027
Azis Y, Jamarun N, Arief S, Nur H. (2015) Facile synthesis of hydroxyapatite particles from cockle shells (Anadara granosa) by hydrothermal method. Oriental journal of chemistry, 31:1099-1105. DOI: https://doi.org/10.13005/ojc/310261
Mel M, Abdeen FR, and Sopyan I. (2011). Fabrication of Ceramic Membrane Chromatography for Biologics Purification. IIUM Engineering Journal, 12(4): 115-124. DOI: https://doi.org/10.31436/iiumej.v12i4.213
Niihara K, Morena R, Hasselman DP. (1982) Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios. Journal of Materials Science Letters, 1(1): 13-16. DOI: https://doi.org/10.1007/BF00724706
Ramesh S, Natasha AN, Tan CY, Bang LT, Ching C.Y Chandran H. (2016) Direct conversion of eggshell to hydroxyapatite ceramic by a sintering method. Ceramics international, 42(6): 7824-7829. https://doi.org/10.1016/j.ceramint.2016.02.015 DOI: https://doi.org/10.1016/j.ceramint.2016.02.015
Kamalanathan P, Ramesh S, Bang LT, Niakan A, Tan CY, Purbolaksono J, Chandran H, Teng WD. (2014) Synthesis and sintering of hydroxyapatite derived from eggshells as a calcium precursor. Ceramics International, 40(10): 16349-16359. https://doi.org/10.1016/j.ceramint.2014.07.074 DOI: https://doi.org/10.1016/j.ceramint.2014.07.074
Ramesh S, Loo ZZ, Tan CY, Chew WK, Ching YC, Tarlochan F, Chandran H, Krishnasamy S, Bang LT, Sarhan AA (2018) Characterization of biogenic hydroxyapatite derived from animal bones for biomedical applications. Ceramics International, 44(9): 10525-10530. https://doi.org/10.1016/j.ceramint.2018.03.072 DOI: https://doi.org/10.1016/j.ceramint.2018.03.072
Aminzare M, Eskandari A, Baroonian MH, Berenov A, Hesabi ZR, Taheri M, Sadrnezhaad SK. (2013) Hydroxyapatite nanocomposites: Synthesis, sintering and mechanical properties. Ceramics International. 39(3): 2197-2206. https://doi.org/10.1016/j.ceramint.2012.09.023 DOI: https://doi.org/10.1016/j.ceramint.2012.09.023
Ramesh S, Tan CY, Hamdi M, Sopyan I, Teng WD. (2007) The influence of Ca/P ratio on the properties of hydroxyapatite bioceramics. In International conference on smart materials and nanotechnology in engineering. International Society for Optics and Photonics. 6423: 64233A. DOI: https://doi.org/10.1117/12.779890
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.