CFD MODELING OF MICROCHANNELS COOLING FOR ELECTRONIC MICRODEVICES

Authors

DOI:

https://doi.org/10.31436/iiumej.v23i1.2113

Keywords:

CFD (Computational Fluids Dynamics, microchannels (MC), processor, cooling

Abstract

 A simulation of the cooling of electronic devices was carried out by means of microchannels, using water as a coolant to dissipate the heat generated from a computer processor, and thus stabilize its optimum operating temperature. For the development of this study, computational fluid mechanics modeling was established in order to determine the temperature profiles, pressure profiles, and velocity behavior of the working fluid in the microchannel. In the results of the study, the operating temperatures of the computer processor were obtained, in the ranges of 303 K to 307 K, with fluid velocities in the microchannels of 5 m/s, a pressure drop of 633.7 kPa, and a factor of safety of the design of the microchannel of 15. From the results, the improvement of the heat transfer in a cooling system of electronic devices was evidenced when using a coolant as a working fluid compared to the cooling by forced air flow traditional.

ABSTRAK: Simulasi penyejukan alatan elektronik telah dibina menggunakan saluran mikro, di samping air sebagai agen penyejuk bagi menghilangkan haba yang terhasil dari pemproses komputer, dan penstabil pada suhu operasi optimum. Kajian ini mengenai model komputasi mekanik bendalir bagi menentukan profil suhu, profil tekanan, dan halaju perubahan bendalir dalam saluran mikro. Dapatan kajian menunjukkan suhu operasi pemproses komputer adalah pada julat suhu 303 K sehingga 307 K, dengan halaju bendalir dalam saluran mikro adalah pada kelajuan 5 m/s, penurunan tekanan sebanyak 633.7 kPa, dan faktor keselamatan 15 bagi reka bentuk saluran mikro. Ini menunjukkan terdapat kenaikan pemindahan haba bagi sistem penyejukan alatan elektronik ini, terutama apabila cecair digunakan sebagai penyejuk haba berbanding kaedah tradisi iaitu dengan mengguna pakai aliran udara sebagai agen penyejuk.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Belhardj S, Mimouni S, Saidane A, Benzohra M. (2003) Using microchannels to cool microprocessors: A transmission-line-matrix study. Microelectronics Journal, 34(4): 247–253. https://doi.org/10.1016/S0026-2692(03)00004-1 DOI: https://doi.org/10.1016/S0026-2692(03)00004-1

Chen CH, Ding CY. (2011) Study on the thermal behavior and cooling performance of a nanofluid-cooled microchannel heat sink. International Journal of Thermal Sciences, 50(3): 378–384. https://doi.org/10.1016/j.ijthermalsci.2010.04.020 DOI: https://doi.org/10.1016/j.ijthermalsci.2010.04.020

Chiu HC, Jang JH, Yeh HW, Wu MS. (2011) The heat transfer characteristics of liquid cooling heatsink containing microchannels. International Journal of Heat and Mass Transfer, 54(1–3): 34–42. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.066 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.066

Bosi F, Balestri G, Ceccanti M, Mammini P, Massa M, Petragnani G, Ragonesi A, Soldani A. (2011) Light prototype support using micro-channel technology as high efficiency system for silicon pixel detector cooling. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 650(1): 213–217. https://doi.org/10.1016/j.nima.2010.12.187 DOI: https://doi.org/10.1016/j.nima.2010.12.187

Brinda R, Joseph Daniel R, Sumangala K. (2012) Ladder shape micro channels employed high performance micro cooling system for ULSI. International Journal of Heat and Mass Transfer, 55(13–14):3 400–3411. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.044 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.044

Naqiuddin NH, Saw LH, Yew MC, Yusof F, Poon HM, Cai Z, Thiam HS. (2018) Numerical investigation for optimizing segmented micro-channel heat sink by Taguchi-Grey method. Applied Energy, 222: 437–450. https://doi.org/10.1016/j.apenergy.2018.03.186 DOI: https://doi.org/10.1016/j.apenergy.2018.03.186

Zhang Y, Wang S, Ding P. (2017) Effects of channel shape on the cooling performance of hybrid micro-channel and slot-jet module. International Journal of Heat and Mass Transfer, 113: 295–309. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.092 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.092

Naqiuddin NH, Saw LH, Yew MC, Yusof F, Ng TC, Yew MK. (2018) Overview of micro-channel design for high heat flux application. Renewable and Sustainable Energy Reviews, 82: 901–914. https://doi.org/10.1016/j.rser.2017.09.110 DOI: https://doi.org/10.1016/j.rser.2017.09.110

Kirsch KL, Thole KA. (2018) Isolating the effects of surface roughness versus wall shape in numerically optimized, additively manufactured micro cooling channels. Experimental Thermal and Fluid Science, 98: 227–238. https://doi.org/10.1016/j.expthermflusci.2018.05.030 DOI: https://doi.org/10.1016/j.expthermflusci.2018.05.030

Yue C, Zhang Q, Zhai Z, Ling L. (2018) CFD simulation on the heat transfer and flow characteristics of a microchannel separate heat pipe under different filling ratios. Applied Thermal Engineering, 139: 25–34. https://doi.org/10.1016/j.applthermaleng.2018.01.011 DOI: https://doi.org/10.1016/j.applthermaleng.2018.01.011

Hnaien N, Marzouk KS, Ben HA, Jayb J. (2016) Numerical Study of Interaction of Two Plane Parallel Jets. International Journal of Engineering, 29(10): 1421–1430. https://doi.org/10.5829/idosi.ije.2016.29.10a.13 DOI: https://doi.org/10.5829/idosi.ije.2016.29.10a.13

Mohammed HA, Bhaskaran G, Shuaib NH, Saidur R. (2011) Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: A review. Renewable and Sustainable Energy Reviews, 15(3): 1502–1512. https://doi.org/10.1016/j.rser.2010.11.031 DOI: https://doi.org/10.1016/j.rser.2010.11.031

Mohd Umair S, Parashram Gulhane N. (2016) On numerical investigation of non-dimensional constant representing the occurrence of secondary peaks in the Nusselt distribution curves. International Journal of Engineering, Transactions A: Basics, 29(10):1 431–1440. https://doi.org/10.5829/idosi.ije.2016.29.10a.00 DOI: https://doi.org/10.5829/idosi.ije.2016.29.10a.14

Aqilah F, Islam M, Juretic F, Guerrero J, Wood D, Nasir Ani F. (2018) Study of mesh quality improvement for. IIUM Engineering Journal, 19(2): 203–212. https://doi.org/https://doi.org/10.31436/iiumej.v19i2.905 DOI: https://doi.org/10.31436/iiumej.v19i2.905

Dr?gan V. (2017) Centrifugal compressor efficiency calculation with heat transfer. IIUM Engineering Journal, 18(2): 225–237. DOI: https://doi.org/10.31436/iiumej.v18i2.695

Thome JR. (2004) Boiling in microchannels: A review of experiment and theory. International Journal of Heat and Fluid Flow, 25(2): 128–139. https://doi.org/10.1016/j.ijheatfluidflow.2003.11.005 DOI: https://doi.org/10.1016/j.ijheatfluidflow.2003.11.005

Talimi V, Muzychka YS, Kocabiyik S. (2012) A review on numerical studies of slug flow hydrodynamics and heat transfer in microtubes and microchannels. International Journal of Multiphase Flow, 39: 88–104. https://doi.org/10.1016/j.ijmultiphaseflow.2011.10.005 DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2011.10.005

Bagheri-Esfe H, Manshadi MD. (2018) A low-cost numerical simulation of a supersonic wind-tunnel design. International Journal of Engineering, Transactions A: Basics, 31(1): 128–135. https://doi.org/10.5829/ije.2018.31.01a.18 DOI: https://doi.org/10.5829/ije.2018.31.01a.18

Azizi K, Keshavarz Moraveji M. (2017) Computational fluid dynamic- two fluid model study of gas-solid heat transfer in a riser with various inclination angles. International Journal of Engineering, Transactions A: Basics, 30(4): 464–472. https://doi.org/10.5829/idosi.ije.2017.30.04a.02 DOI: https://doi.org/10.5829/idosi.ije.2017.30.04a.02

Villegas JF, Guarín AM, Unfried-Silgado J. (2019) A Coupled Rigid-viscoplastic Numerical Modeling for Evaluating Effects of Shoulder Geometry on Friction Stir-welded Aluminum Alloys. International Journal of Engineering, Transactions B: Applications, 32(2): 184–191. https://doi.org/10.5829/ije.2019.32.02b.17 DOI: https://doi.org/10.5829/ije.2019.32.02b.17

Culun P, Celik N, Pihtili K. (2018) Effects of design parameters on a multi jet impinging heat transfer. Alexandria Engineering Journal, 57(4): 4255–4266. https://doi.org/10.1016/j.aej.2018.01.022 DOI: https://doi.org/10.1016/j.aej.2018.01.022

Elsamni OA, Abbasy AA, El-Masry OA. (2019) Developing laminar flow in curved semi-circular ducts. Alexandria Engineering Journal, 58(1): 1–8. https://doi.org/10.1016/j.aej.2018.03.013 DOI: https://doi.org/10.1016/j.aej.2018.03.013

Moradikazerouni A, Afrand M, Alsarraf J, Mahian O, Wongwises S, Tran MD. (2019) Comparison of the effect of five different entrance channel shapes of a micro-channel heat sink in forced convection with application to cooling a supercomputer circuit board. Applied Thermal Engineering, 150: 1078–1089. https://doi.org/10.1016/j.applthermaleng.2019.01.051 DOI: https://doi.org/10.1016/j.applthermaleng.2019.01.051

Abdollahi A, Mohammed HA, Vanaki SM, Osia A, Golbahar Haghighi MR. (2017) Fluid flow and heat transfer of nanofluids in microchannel heat sink with V-type inlet/outlet arrangement. Alexandria Engineering Journal, 56(1): 161–170. https://doi.org/10.1016/j.aej.2016.09.019 DOI: https://doi.org/10.1016/j.aej.2016.09.019

Sreehari D, Sharma AK. (2019) On thermal performance of serpentine silicon microchannels. International Journal of Thermal Sciences, 146: 1-14. https://doi.org/10.1016/j.ijthermalsci.2019.106067 DOI: https://doi.org/10.1016/j.ijthermalsci.2019.106067

Downloads

Published

2022-01-04

How to Cite

Fábregas, J., Santamaria, H., Buelvas, E., Perez, S., Díaz, C., Carpintero, J., … Villa, J. (2022). CFD MODELING OF MICROCHANNELS COOLING FOR ELECTRONIC MICRODEVICES. IIUM Engineering Journal, 23(1), 384–395. https://doi.org/10.31436/iiumej.v23i1.2113

Issue

Section

Mechanical and Aerospace Engineering