Evaluation of Ductility of Reinforced Concrete Structures with Shear Walls having Different Thicknesses and Different Positions
DOI:
https://doi.org/10.31436/iiumej.v23i2.2070Keywords:
Ductility, Non-linear static analysis, Earthquake design, Pushover curve, Shear wallAbstract
Ductility is one of the main criteria in reinforced concrete (RC) structures. ASCE 7-10 seismic design code recognizes the importance of ductility in earthquake-resistant structures. The structures need to be designed to have sufficient strength and ductility for overall safety against earthquake forces. Both the strength and the ductility are mutually associated to enhance structural seismic safety in this study. Previous studies showed that a shear wall gives different performance based on its position in building structures. This paper presents the position of the shear walls and shear wall thicknesses effects on ductility. A total of 96 two-dimensional (2D) models are analyzed for this work using ETABS software. The non-linear static analysis (pushover) method is used to analyze and design these RC building structures with shear walls. It is concluded that an increase in shear wall thickness causes a decrease in ductility values, and a decrease in ductility value will also occur when the shear wall position changes from edge to middle.
ABSTRAK: Kemuluran adalah salah satu kriteria utama dalam struktur konkrit bertulang (RC). Kod reka bentuk ASCE 7-10 seismik dunia menyedari pentingnya kemuluran dalam struktur tahan gempa. Struktur perlu dibina bagi mencapai ketahanan kekuatan dan kemuluran yang mencukupi bagi keselamatan keseluruhan terhadap kekuatan gempa. Kekuatan dan kemuluran dihubungkan bersama bagi meningkatkan keselamatan tahan gempa dalam kajian ini. Kajian sebelumnya menunjukkan bahawa dinding ricih memberikan prestasi yang berbeza berdasarkan kedudukannya dalam struktur bangunan. Kertas ini menunjukkan kedudukan dinding ricih dan ketebalan dinding ricih kesan pada kemuluran. Sebanyak 96 model dua dimensi (2D) dianalisis dalam kajian ini menggunakan perisian ETABS. Kaedah analisis statik bukan linear (pushover) digunakan bagi menganalisis dan merancang struktur bangunan RC ini dengan dinding ricih. Kesimpulannya peningkatan ketebalan dinding ricih menyebabkan penurunan nilai kemuluran, dan penurunan nilai kemuluran juga akan terjadi ketika posisi dinding ricih berubah dari tepi ke tengah.
Downloads
Metrics
References
Chou CC, Tsai WJ, Chung PT. (2016) Development and validation tests of a dual-core self-centering sandwiched buckling-restrained brace (SC-SBRB) for seismic resistance. ScienceDirect, 121(15): 30-41. DOI: https://doi.org/10.1016/j.engstruct.2016.04.015
Yön B, Say?n E, Onat O. (2017) Earthquake and structural damages. Earthquakes-Tectonics, Hazard and Risk Mitigation, 21(3): 319-339. DOI: https://doi.org/10.5772/65425
Furtado A, Rodrigues H, Arêde A, Varum H, Grubiši? M, Šipoš TK. (2018) Prediction of the earthquake response of a three-story infilled RC structure. Engineering Structures, 171: 214-235. DOI: https://doi.org/10.1016/j.engstruct.2018.05.054
Ravikumara HS, Kulkarni SR, KS BNA. (2015) Study of plastic hinge formation in R.C frames with non-linear static analysis. An International Journal of Research in Engineering and Technology, 4(9): 179-182. DOI: https://doi.org/10.15623/ijret.2015.0409031
Zerbin M, Aprile A, Spacone E. (2020) New formulation of ductility reduction factor of RC frame-wall dual systems for design under earthquake loadings. Soil Dynamics and Earthquake Engineering, 138: 106279. DOI: https://doi.org/10.1016/j.soildyn.2020.106279
Rana EN, Rana S. (2014) Structural Forms Systems for Tall Building Structures. SSRG International Journal of Civil Engineering, 1(4): 33-35. DOI: https://doi.org/10.14445/23488352/IJCE-V1I4P106
Esmaili O, Epackachi S, Samadzad M, Mirghaderi SR. (2008) Study of structural RC shear wall system in a 56-story RC tall building. The 14th world conference earthquake engineering.
Madhu S. (2018) Optimum location of shear walls in a R.C building. International Journal of Scientific & Engineering Research, 9(7): 2229-5518.
LovaRaju K, Balaji DK. (2015) Effective location of shear walls on the performance of building frame subjected to earthquake load. International Advanced Research Journal in Science, Engineering and Technology, 2(1): 123-129. DOI: https://doi.org/10.17148/IARJSET.2015.2105
Rokanuzzaman M, Farjana K, Anik D, Reza S. (2017) Effective location of shear walls on the performance of building frame subjected to lateral loading. International Journal of Advances in Mechanical and Civil Engineering, 4(6): 23-31.
Vielma-Perez JC, Mulder MM. (2018) Improved procedure for determining the ductility of buildings under seismic loads. Revista Internacional de Métodos Numéricos para cálculo y diseño en Ingeniería, 34(1): 61-66. DOI: https://doi.org/10.23967/j.rimni.2018.03.001
Mehta BB, Vasani PC. (2014) Ductility requirements for buildings. Applied Mechanics Department, 216: 113-122.
Khoshnoudian F, Mestri S, Abedinik F. (2011) Proposal of lateral load pattern for pushover analysis of RC buildings. Computational Methods in Civil Engineering, 2(2): 169-183.
Wang Z, Martinez-Vazquez P, Zhao B. (2020). Pushover analysis of structures subjected to combined actions of earthquake and wind. Engineering structures, 221: 111034. DOI: https://doi.org/10.1016/j.engstruct.2020.111034
Kadid A, Boumrkik A. (2008) Pushover analysis of RC frame structure. Asian Journal of Civil Engineering, 9(1): 75-83.
Ozkul T, Kurtbeyoglu A, Borekci M, Zengin B, Kocak A. (2019) Effect of shear wall on seismic performance of RC frame buildings. Engineering Failure Analysis, 100: 60-75. DOI: https://doi.org/10.1016/j.engfailanal.2019.02.032
Tarigan J, Manggala J, Sitorus T. (2018) The effect of shear wall location in resisting earthquake. MS&E, 309(1): 012077. DOI: https://doi.org/10.1088/1757-899X/309/1/012077
Shinde SB, Raut NB. (2016) Effect of Change in Thicknesses and Height in Shear Wall on Deflection of Multistoried Buildings. International Journal of Civil Engineering and Technology, 7(6): 587-591.
Huang K, Kuang JS. (2010) On the Applicability of Pushover Analysis for Seismic Evaluation of Medium- and High-rise Buildings. The Structural Design of Tall and Special Buildings, 19: 573-588. DOI: https://doi.org/10.1002/tal.511
Carrillo J, González G, Rubiano A. (2014) Displacement ductility for seismic design of RC walls for low-rise housing. Latin American Journal of Solids and Structures, 11(4): 725-737. DOI: https://doi.org/10.1590/S1679-78252014000400010
Xu, Y. Y., Lin, Z. R., & Zhang, T. (2016). Design features and significance of the ductile reinforced concrete frame structure. In Design, Manufacturing and Mechatronics: Proceedings of the 2015 International Conference on Design, Manufacturing and Mechatronics, 183-189. DOI: https://doi.org/10.1142/9789814730518_0023
Sococol I, Mihai P, Olteanu-Don?ov I. (2019) Ductility–Concept for Improving the Seismic Response for Structural Reinforced Concrete Frame Systems. Buletinul Institutului Politehnic din lasi. Sectia Constructii, Arhitectura, 65(1): 17-30.
Mantawy H. (2015) Ductility of RC Frame Buildings Subjected to the Recent New Zealand Earthquakes. 5(1): 1–8. DOI: https://doi.org/10.2749/222137815818359131
Skhakov R. (2003) Seismic energy dissipation and ductility of RC elements section. In Fifth National Conference on Earthquake Engineering, 21(4): 22-32
Venkatesh SV, Bai HS, Navanitha C. (2009) Performance of RC Frame with and without Shear Wall Subjected to Earthquake Load. In Proceedings of Civil Engineering Conference-Innovation without limits, 18(1): 19-21.
Bongilwar R, Harne VR, Chopade A. (2018) Significance of Shear Wall in Multi-Storey Structure with Seismic Analysis. In IOP Conference Series: Materials Science and Engineering, 330(1): 12-17. DOI: https://doi.org/10.1088/1757-899X/330/1/012131
Rathod SD, Bhokare SS, Dhiwar PS, Shinde RN. (2017) Comparative Pushover Analysis of RCC, Steel and Composite High Rise Building Frame (G+11) Using ETABS. Journal of Information, Knowledge, and Research in Civil Engineering, 4(2): 88-94.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.